Background Temperature monitoring during high-intensity focused ultrasound (HIFU) therapy on tissue is essential to regulate the degree of thermal coagulation and to achieve the desired treatment outcomes eventually. The aim of the current study was to design and investigate the feasibility of a proportional–integral–derivative (PID) temperature controller-integrated portable HIFU driver for thermal coagulation. Methods A portable HIFU driver was designed and operated at a maximum output voltage of 50 V with pulse-width modulation signals at 2 MHz. The temperature of ex vivo bovine liver tissue was monitored using a K-type thermocouple during the 2-MHz HIFU exposure. Results The tissue temperature was maintained at 60 °C using a PID controller-integrated HIFU driver that modulated the output voltage during the 300-s HIFU exposure. The ex vivo testing demonstrated that the tissue temperature at the focal point approached the chosen temperature, i.e., 60 °C, within 70 s. The temperature was maintained with a deviation of less than 4 °C until the HIFU driver voltage was turned off at 300 s. Conclusions The designed PID controller-integrated HIFU driver can be used as a small portable tool to regulate the tissue temperature in real time and achieve thermal coagulation via HIFU sonication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.