Fifth Generation (5G) systems are envisaged to support a wide range of applications scenarios with varying requirements. 5G architecture includes network slicing abilities which facilitate the partitioning of a single network infrastructure on to multiple logical networks, each tailored to a given use case, providing appropriate isolation and Quality of Service (QoS) characteristics. Radio Access Network (RAN) slicing is key to ensuring appropriate QoS over multiple domains; achieved via the configuration of multiple RAN behaviors over a common pool of radio resources. This Paper proposes a novel solution for efficient resource allocation and assignment among a verity of heterogeneous services, to utilize the resources while ensuring maximum QoS for network services. First, this paper evaluates the effectiveness of different wireless data bearers. Secondly, the paper proposes a novel dynamic resource allocation algorithm for RAN slicing within 5G New Radio (NR) networks utilising cooperative game theory combined with priority-based bargaining. The impact of this work to industry is to provide a new technique for resource allocation that utilizes cooperative bargaining to ensure all network services achieve minimum QoS requirementswhile using application priority to reduce data transfer time for key services to facilitate increase turn around time at the gate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.