Elucidation of the phylogenetic origins of simian and human immunodeficiency viruses (SIV and HIV) is fundamental to the understanding of HIV pathogenesis and the spread of AIDS worldwide. In this study, we molecularly characterized multiple SIVAGM isolates from four different African green monkey species (vervet, grivet, sabaeus and tantalus monkeys). Phylogenetic analysis of partial (1 kb) env sequences indicated that all SIVAGM strains cluster together, and that they fall into four distinct sequence sub‐groups according to their species of origin. However, alignment of long terminal repeat sequences revealed that SIVs from West African sabaeus monkeys contain a structural feature (a duplication of the transactivation response element) thus far only found in otherwise highly divergent lentiviruses infecting sooty mangabeys (SIVSM) and humans (HIV‐2). To determine whether there were additional similarities with the SIVSM/HIV‐2 group, a full‐length replication competent sabaeus provirus was cloned and sequenced. In phylogenetic trees derived from the central and 3′ coding regions, the sabaeus virus clustered with SIVAGM isolates from other African green monkey species. However, in trees derived from the 3′ half of gag and the adjacent 5′ region of pol, the sabaeus virus grouped with the SIVSM/HIV‐2 lineage. These results indicated that the sabaeus virus comprised a mosaic genome which must have resulted from recombination of divergent lentiviruses in the distant past. A second, independent sabaeus isolate exhibited similar phylogenetic relationships, suggesting that all West African green monkey viruses share this complex evolutionary history. Taken together, these results indicate that African green monkeys have been infected with SIVAGM for very long periods of time, and that recombination and cross‐species transmission in the wild have contributed to the genetic complexity of primate lentiviruses.
Since 1989, human immunodeficiency virus type 1 (HIV-1) has spread explosively through the heterosexual population in Thailand. This epidemic is caused primarily by viruses classified as "subtype E", which, on the basis of limited sequence comparisons, appear to represent hybrids of subtypes A (gag) and E (env). However, the true evolutionary origins of "subtype E" viruses are still obscure since no complete genomes have been analyzed, and only one full-length subtype A sequence has been available for phylogenetic comparison. In this study, we determined full-length proviral sequences for "subtype E" viruses from Thailand (93TH253) and the Central African Republic (90CR402) and for a subtype A virus from Uganda (92UG037). We also sequenced the long terminal repeat (LTR) regions from 16 virus strains representing clades A, C, E, F, and G. Detailed phylogenetic analyses of these sequences indicated that "subtype E" viruses do indeed represent A/E recombinants with multiple points of crossover along their genomes. The extracellular portion of env, parts of vif and vpr, as well as most of the LTR are of subtype E origin, whereas the remainder of the genome is of subtype A origin. The possibility that the discordant phylogenetic positions of "subtype E" viruses in gag-and env-derived trees are the result of unusual rates or patterns of evolution was also considered but was ruled out on the basis of two lines of evidence: (i) phylogenetic trees constructed for synonymous and nonsynonymous substitutions yielded the same discordant branching orders for "subtype E" gag and env gene sequences, thus excluding selection-driven evolution, and (ii) multiple crossovers in the viral genome are most consistent with the copy choice model of recombination and have been observed in other documented examples of HIV-1 intersubtype recombination. Thai and CAR "subtype E" viruses exhibited the same pattern of A/E mosaicism, indicating that the recombination event occurred in Africa prior to the spread of virus to Asia. Finally, all "subtype E" viruses were found to contain a distinctive two-nucleotide bulge in their transactivation response (TAR) elements. This feature was present only in viruses which also contained a subtype A 5 pol region (i.e., subtype A viruses or A/D and A/E recombinants), raising the possibility of a functional linkage between the TAR region and the polymerase. The implications of epidemic spread of a recombinant HIV-1 strain to viral natural history and vaccine development are discussed.
The virulence properties of human immunodeficiency virus type 2 (HIV-2) are known to vary significantly and to range from relative attenuation in certain individuals to high-level pathogenicity in others. These differences in clinical manifestations may, at least in part, be determined by genetic differences among infecting virus strains. Evaluation of the full spectrum of HIV-2 genetic diversity is thus a necessary first step towards understanding its molecular epidemiology, natural history of infection, and biological diversity. In this study, we have used nested PCR techniques to amplify viral sequences from the DNA of uncultured peripheral blood mononuclear cells from 12 patients with HIV-2 seroreactivity. Sequence analysis of four nonoverlapping genomic regions allowed a comprehensive analysis of HIV-2 phylogeny. The results revealed (i) the existence of five distinct and roughly equidistant evolutionary lineages of HIV-2 which, by analogy with HIV-1, have been termed sequence subtypes A to E; (ii) evidence for a mosaic HIV-2 genome, indicating that coinfection with genetically divergent strains and recombination can occur in HIV-2-infected individuals; and (iii) evidence supporting the conclusion that some of the HIV-2 subtypes may have arisen from independent introductions of genetically diverse sooty mangabey viruses into the human population. Importantly, only a subset of HIV-2 strains replicated in culture: all subtype A viruses grew to high titers, but attempts to isolate representatives of subtypes C, D, and E, as well as the majority of subtype B viruses, remained unsuccessful. Infection with all five viral subtypes was detectable by commercially available serological (Western immunoblot) assays, despite intersubtype sequence differences of up to 25% in the gag, pol, and env regions. These results indicate that the genetic and biological diversity of HIV-2 is far greater than previously appreciated and suggest that there may be subtype-specific differences in virus biology. Systematic natural history studies are needed to determine whether this heterogeneity has clinical relevance and whether the various HIV-2 subtypes differ in their in vivo pathogenicity.
Proviral integration is essential for HIV‐1 replication and represents an important potential target for antiviral drug design. Although much is known about the integration process from studies of purified integrase (IN) protein and synthetic target DNA, provirus formation in virally infected cells remains incompletely understood since reconstituted in vitro assays do not fully reproduce in vivo integration events. We have developed a novel experimental system in which IN‐mutant HIV‐1 molecular clones are complemented in trans by Vpr–IN fusion proteins, thereby enabling the study of IN function in replicating viruses. Using this approach we found that (i) Vpr‐linked IN is efficiently packaged into virions independent of the Gag–Pol polyprotein, (ii) fusion proteins containing a natural RT/IN processing site are cleaved by the viral protease and (iii) only the cleaved IN protein complements IN‐defective HIV‐1 efficiently. Vpr‐mediated packaging restored IN function to a wide variety of IN‐deficient HIV‐1 strains including zinc finger, catalytic core and C‐terminal domain mutants as well as viruses from which IN was completely deleted. Furthermore, trans complemented IN protein mediated a bona fide integration reaction, as demonstrated by the precise processing of proviral ends (5′‐TG…CA‐3′) and the generation of an HIV‐1‐specific (5 bp) duplication of adjoining host sequences. Intragenic complementation between IN mutants defective in different protein domains was also observed, thereby providing the first evidence for IN multimerization in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.