There is increasing evidence showing that clinicians employ different management strategies in their use of The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC). In this meta-analysis, we investigated the differences in diagnosis frequency, resection rate (RR), and risk of malignancy (ROM) between Western (ie, American and European) and Asian cytopathology practices. We searched PubMed . Proportion and 95% CIs were calculated using a random-effect model. We used independent sample t tests to compare frequencies, RR, and ROM between Western and Asian practices. We analyzed a total of 38 studies with 145,066 fine-needle aspirations. Compared with Asian practice, Western series had a significantly lower ROM in most of TBSRTC categories, whereas the RR was not statistically different. Focusing on indeterminate nodules, the RR in Western series was significantly higher (51.3% vs 37.6%; P = .048), whereas the ROM was significantly lower (25.4% vs 41.9%; P = .002) compared with those in Asian series. The addition of Asian cohorts increased ROM for most of diagnostic categories compared with the original TBSRTC. In conclusion, this study demonstrates a difference in Western and Asian thyroid cytology practice, especially regarding the indeterminate categories. Lower RR and higher ROM suggest that Asian clinicians adopt a more conservative approach, whereas immediate diagnostic surgery is favored in Western practice for indeterminate nodules. The addition of Asian series into a meta-analysis of TBSRTC altered ROM for several categories, which should be considered in future revisions of TBSRTC.
The prognostic role of molecular markers in papillary thyroid carcinoma (PTC) is a matter of ongoing debate. The aim of our study is to investigate the impact of RAS, BRAF, TERT promoter mutations and RET/PTC rearrangements on the prognosis of PTC patients. We performed a search in four electronic databases: PubMed, Scopus, Web of Science and Virtual Health Library (VHL). Data of hazard ratio (HR) and its 95% confidence interval (CI) for disease-specific survival (DSS) and disease-free survival (DFS) were directly obtained from original papers or indirectly estimated from Kaplan–Meier curve (KMC). Pooled HRs were calculated using random-effect model weighted by inverse variance method. Publication bias was assessed by using Egger’s regression test and visual inspection of funnel plots. From 2630 studies, we finally included 35 studies with 17,732 patients for meta-analyses. TERT promoter mutation was significantly associated with unfavorable DSS (HR = 7.64; 95% CI = 4.00–14.61) and DFS (HR = 2.98; 95% CI = 2.27–3.92). BRAF mutations significantly increased the risk for recurrence (HR = 1.63; 95% CI = 1.27–2.10) but not for cancer mortality (HR = 1.41; 95% CI = 0.90–2.23). In subgroup analyses, BRAF mutation only showed its prognostic value in short-/medium-term follow-up. Data regarding RAS mutations and RET/PTC fusions were insufficient for meta-analyses. TERT promoter mutation can be used as an independent and reliable marker for risk stratification and predicting patient’s outcomes. The use of BRAF mutation to assess patient prognosis should be carefully considered.
The risk stratification of PTC based on these four genotypes can help improve the clinical management of PTCs by identifying the group of PTCs with the highest aggressiveness.
BackgroundWith the expanded availability of next generation sequencing (NGS)-based clinical genetic tests, clinicians seeking to test patients with Mendelian diseases must weigh the superior coverage of targeted gene panels with the greater number of genes included in whole exome sequencing (WES) when considering their first-tier testing approach. Here, we use an in silico analysis to predict the analytic sensitivity of WES using pathogenic variants identified on targeted NGS panels as a reference.MethodsCorresponding nucleotide positions for 1533 different alterations classified as pathogenic or likely pathogenic identified on targeted NGS multi-gene panel tests in our laboratory were interrogated in data from 100 randomly-selected clinical WES samples to quantify the sequence coverage at each position. Pathogenic variants represented 91 genes implicated in hereditary cancer, X-linked intellectual disability, primary ciliary dyskinesia, Marfan syndrome/aortic aneurysms, cardiomyopathies and arrhythmias.ResultsWhen assessing coverage among 100 individual WES samples for each pathogenic variant (153,300 individual assessments), 99.7% (n = 152,798) would likely have been detected on WES. All pathogenic variants had at least some coverage on exome sequencing, with a total of 97.3% (n = 1491) detectable across all 100 individuals. For the remaining 42 pathogenic variants, the number of WES samples with adequate coverage ranged from 35 to 99. Factors such as location in GC-rich, repetitive, or homologous regions likely explain why some of these alterations were not detected across all samples. To validate study findings, a similar analysis was performed against coverage data from 60,706 exomes available through the Exome Aggregation Consortium (ExAC). Results from this validation confirmed that 98.6% (91,743,296/93,062,298) of pathogenic variants demonstrated adequate depth for detection.ConclusionsResults from this in silico analysis suggest that exome sequencing may achieve a diagnostic yield similar to panel-based testing for Mendelian diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.