The instability of viscous capillary jets subject to disturbances consisting of two superposed wavenumbers, and for large disturbance amplitudes is investigated. Disturbances composed of the superposition of a fundamental disturbance (first harmonic) with either its second or third harmonic are used. The influence of the wavenumber of the fundamental disturbance on the jet breakup is studied for a disturbance composed of a first harmonic with an initial non-dimensional amplitude of ε1 = 0.01 and a second harmonic with an initial non-dimensional amplitude of ε2 = 0.05. The influence of the initial amplitudes of the first and second harmonics on the jet breakup is studied for two non-dimensional wavenumbers of the fundamental (first harmonic): k = 0.45 and k = 0.7; the second harmonic is unstable in the former and stable in the latter case. The effect of an added third harmonic is studied only for k = 0.45 but for a wide range of initial amplitudes. All cases are studied for an in-phase and a 180° out-of-phase superposition of the two waves. The nonlinear interaction between the two waves results in the formation of a variety of drop sizes and shapes. The breakup times can be controlled within a wide range using this technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.