Tau filaments are the pathological hallmark of >20 neurodegenerative diseases including Alzheimer's disease. Six tau isoforms exist that can be grouped into 4-repeat (4R) tau and 3-repeat (3R) tau based on the presence or absence of the second of four microtubule binding repeats. Recent evidence suggests that tau filaments can transfer between cells and spread through the brain. Here we demonstrate in vitro that seeded filament growth, a prerequisite for tau spreading, is crucially dependent on the isoform composition of individual seeds. Seeds of 3R tau and 3R/4R tau recruit both types of isoforms. Seeds of 4R tau recruit 4R tau, but not 3R tau, establishing an asymmetric barrier. Conformational templating of 4R tau onto 3R tau seeds eliminates this barrier, giving rise to a new type of tau filament. These findings provide fundamental mechanistic insights into the seeding, propagation, and diversification of tau filaments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.