Knee osteoarthritis (OA) is one of the highest disability factors in the world. This musculoskeletal disorder is assessed from clinical symptoms, and typically confirmed via radiographic assessment. This visual assessment done by a radiologist requires experience, and suffers from moderate to high inter-observer variability. The recent literature has shown that deep learning methods can reliably perform the OA severity assessment according to the gold standard Kellgren-Lawrence (KL) grading system. However, these methods require large amounts of labeled data, which are costly to obtain. In this study, we propose the Semixup algorithm, a semi-supervised learning (SSL) approach to leverage unlabeled data. Semixup relies on consistency regularization using in-and out-of-manifold samples, together with interpolated consistency. On an independent test set, our method significantly outperformed other state-of-the-art SSL methods in most cases. Finally, when compared to a well-tuned fully supervised baseline that yielded a balanced accuracy (BA) of 70.9 ± 0.8% on the test set, Semixup had comparable performance-BA of 71± 0.8% (p = 0.368) while requiring 6 times less labeled data. These results show that our proposed SSL method allows building fully automatic OA severity assessment tools with datasets that are available outside research settings.
In medical applications, deep learning methods are built to automate diagnostic tasks. However, a clinically relevant question that practitioners usually face, is how to predict the future trajectory of a disease (prognosis). Current methods for such a problem often require domain knowledge, and are complicated to apply. In this paper, we formulate the prognosis prediction problem as a one-to-many forecasting problem from multimodal data. Inspired by a clinical decisionmaking process with two agents -a radiologist and a general practitioner, we model a prognosis prediction problem with two transformer-based components that share information between each other. The first block in this model aims to analyze the imaging data, and the second block leverages the internal representations of the first one as inputs, also fusing them with auxiliary patient data. We show the effectiveness of our method in predicting the development of structural knee osteoarthritis changes over time. Our results show that the proposed method outperforms the state-of-theart baselines in terms of various performance metrics. In addition, we empirically show that the existence of the multi-agent transformers with depths of 2 is sufficient to achieve good performances. Our code is publicly available at https: //github.com/MIPT-Oulu/CLIMAT.
This paper tackles the problem of developing active learning (AL) methods in the context of knee osteoarthritis (OA) diagnosis from X-ray images. OA is known to be a huge burden for society, and its associated costs are constantly rising. Automatic diagnostic methods can potentially reduce these costs, and Deep Learning (DL) methodology may be its key enabler. To date, there have been numerous studies on knee OA severity grading using DL, and all but one of them assume a large annotated dataset available for model development. In contrast, our study shows one can develop a knee OA severity grading model using AL from as little as 50 samples randomly chosen from a pool of unlabeled data. The main insight of this work is that the performance of AL improves when the model developer leverages the consistency regularization technique, commonly applied in semi-supervised learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.