a b s t r a c tLet f , g i , i = 1, . . . , l, h j , j = 1, . . . , m, be polynomials on R n and S := {x ∈ R n | g i (x) = 0, i = 1, . . . , l, h j (x) ≥ 0, j = 1, . . . , m}. This paper proposes a method for finding the global infimum of the polynomial f on the semialgebraic set S via sum of squares relaxation over its truncated tangency variety, even in the case where the polynomial f does not attain its infimum on S. Under a constraint qualification condition, it is demonstrated that: (i) The infimum of f on S and on its truncated tangency variety coincide; and (ii) A sums of squares certificate for nonnegativity of f on its truncated tangency variety. These facts imply that we can find a natural sequence of semidefinite programs whose optimal values converge, monotonically increasing to the infimum of f on S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.