Temporal and spatial water quality data are essential to evaluate human health risks. Understanding the interlinking variations between water quality and socio-economic development is the key for integrated pollution management. In this study, we applied several multivariate approaches, including trend analysis, cluster analysis, and principal component analysis, to a 15-year dataset of water quality monitoring (1999 to 2013) in the Thi Vai estuary, Southern Vietnam. We discovered a rapid improvement for most of the considered water quality parameters (e.g., DO, NH4, and BOD) by step trend analysis, after the pollution abatement in 2008. Nevertheless, the nitrate concentration increased significantly at the upper and middle parts and decreased at the lower part of the estuary. Principal component (PC) analysis indicates that nowadays the water quality of the Thi Vai is influenced by point and diffuse pollution. The first PC represents soil erosion and stormwater loads in the catchment (TSS, PO4, and Fetotal); the second PC (DO, NO2, and NO3) determines the influence of DO on nitrification and denitrification; and the third PC (pH and NH4) determines point source pollution and dilution by seawater. Therefore, this study demonstrated the need for stricter pollution abatement strategies to restore and to manage the water quality of the Thi Vai Estuary.
<p>The ecohydrological models AnnAGNPS and ZIN-AgriTra are compared regarding their performance in a small watershed. Both models are presently applied for the transport simulation of plant protection products (PPP) from an agricultural area to a small stream to quantify the impact of reduction measures as part of a comprehensive study.</p><p>The spatial discretization of AnnAGNPS is based on hydrologic response units with homogeneous characteristics (land use, slope and soil type). For the continuous simulations daily time steps are used, only soil moisture is simulated using hourly time steps. The underlying equations are physically based, mostly simple calculation methods are used.<br>ZIN-AgriTra operates on grid cells, which allows a more accurate representation of the flow paths. The model is physically based, e. g. for the unsaturated soil zone the Richards equation is used. This requires detailed soil properties for its parameterization and leads to small computational time steps (minutes to hours) to fulfil the mass balance requirements. The detailed spatial and temporal scales, as well as the complex equations, result in a long computation time in comparison to AnnAGNPS.&#160;&#160; <br>AnnAGNPS and ZIN-AgriTra are compared regarding their accuracy in the water balance and the mass balance simulation. For the mass balance different constituents as e. g. sediment, phosphorus and selected pesticides are simulated.</p><p>The study area is located in southern Lower Saxony, Germany. The catchment area has a size of 5 km<sup>2</sup>. The investigated stream (Lahbach) flows along agriculturally cultivated land. The relatively high slopes and the fine soil texture lead to a high fraction of generated discharge (as surface runoff, erosion and rapid interflow) from precipitation events. In the ongoing study the catchment was intensively monitored regarding meteorological and hydrological data. In addition, an event-based monitoring campaign was performed to quantify the reaction of the Lahbach during precipitation events, particularly the change in constituent concentrations. Due to the close cooperation with a local farmer, management measures are known very precisely.</p><p>The different temporal resolution of the input data and the time step of output parameters lead to differences in the agreement between measured and simulated time series among the two models. Overall, ZIN-AgriTra led to a more accurate reproduction of the rainfall-runoff events.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.