Enhanced Green Fluorescent Protein (eGFP) shows much stronger fluorescence than its ancestor, Green Fluorescent Protein (GFP), thus has been widely applied as a reporter for biomedical research. In this study, we reported the expression of a synthetic codon optimized gene encoding eGFP in Escherichia coli (E. coli). The gene was cloned into two expression vectors, pQE30 and pColdII and the resulting recombinant vectors were transformed into E. coli M15 and BL21 De3 RIL codon plus strains, respectively. The expression levels of functional eGFP showed a temperature dependent pattern, in which lowering the induction temperature increased the amount of functional eGFP. Surprisingly, eGFP showed a phenomenon called auto-induction when E. coli TOP10 cells carrying recombinant pQE30 and pColdII were grown on Luria Broth plates. The recombinant eGFP showed robust stability even at room temperature, thus greatly facilitated its purification and handling. Mouse polyclonal antibodies were conveniently generated against the protein. Besides its potential application as a reporter gene in E. coli, the gene and its expression systems reported here are extremely useful as models for teaching recombinant DNA technology at undergraduate level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.