In this research, the performance of a cementless eco-binder, a mixture of waste materials including slag, circulating fluidized bed combustion ash (CFA), and rice husk ash (RHA) was investigated, in which CFA acted as an activator. One hundred and twenty paste samples were prepared by using the RHA/(slag + RHA) ratios of 0, 15, 30, 45% while keeping a constant ratio of CFA/(slag + RHA) at 25%. The setting period, compressive strength, the ultrasonic pulse velocity (UPV), and drying shrinkage of paste samples were determined at the samples’ age of up to 91 days. In addition, the microstructures of all paste samples were also characterized by scanning electron microscopy (SEM). It was found that the use of cementless eco-binder significantly increased the setting times, lower compressive strength, drying shrinkage, and UPV values compared to the control OPC sample. The maximum 91-day-old compressive strength gained by the binary binder of slag and CFA (R00C25) was 90% of that of the control specimen. Incorporation of RHA with higher replacement levels up to 45% resulted in a significant decrease in compressive strength up to 50%. Moreover, the SEM analysis revealed that there was a large difference in the microstructures of the control and the cementless eco-binder samples, in which the main hydration products were C-S-H/C-A-S-H gels and ettringite (AFt) due to relatively high amount of SO3 and SiO2 in the CFA and RHA, respectively. Thus, it can be realized that the potential for the use of slag, CFA, and RHA as a sustainable cement-free binder is promising in the construction industry, especially for lower strength or no required early high strength structures. Keywords: cementless eco-binder; circulating fluidized bed combustion; rice husk ash; slag; microstructure; compressive strength; drying shrinkage; setting time; ultrasonic pulse velocity.
This study presents an experimental investigation on the recycling of waste incineration bottom ash (IBA) as a fine aggregate in the production of interlocking concrete bricks (ICB). Before being used, the concentration of heavy metal in IBA was determined to confirm it is a non-toxic material. In this study, the IBA was used to replace crushed sand (CSA) in the brick mixtures at different replacement levels of 0%, 25%, 50%, 75%, and 100% (by volume). The ICB samples were checked for dimensions, visible defects, compressive strength, bending strength, water absorption, and surface abrasion in accordance with the related Vietnamese standards. The test results demonstrated that the IBA used in this study was a non-toxic material, which can be widely used for construction activities. All of the ICB samples prepared for this study exhibited a nice shape with consistent dimensions and without any visible defects. The incorporation of IBA in the brick mixtures affected engineering properties of the ICB samples such as a reduction in the compressive strength and bending strength and an increment in water absorption and surface abrasion of the brick samples. As a result, the compressive strength, bending strength, water absorption, and surface abrasion values of ICB samples at 28 days were in the ranges of 20.6 – 34.9 MPa, 3.95 – 6.62 MPa, 3.8 – 7.2%, and 0.132 – 0.187 g/cm2, respectively. Therefore, either partial or full replacement of CSA by IBA, the ICB with grades of M200 – M300 could be produced with satisfying the TCVN 6476:1999 standard in terms of dimensions, visible defects, compressive strength, water absorption, and surface abrasion. These results demonstrated the high applicability of the local IBA in the production of the ICB for various construction application purposes. Keywords: interlocking concrete brick; waste incineration bottom ash; visible defect; compressive strength; bending strength; water absorption; surface abrasion.
The possibility of using recycled waste medical-glass aggregate (RGA) as a fine aggregate in the production of normal-strength concrete was investigated in this study. The influence of RGA as crushed sand (CS) replacement at different levels (by volume) of 0 – 100% (an interval of 20%) on the engineering properties and durability of concrete was also studied. Results show that the replacement of CS by RGA insignificantly affected the workability and unit weight of fresh concrete mixtures. Besides, using RGA to replace 20 – 60% CS was beneficial in terms of compressive strength, drying shrinkage, and ultrasonic pulse velocity (UPV). At these replacement levels, the dry density values were found to increase and the water absorption values were reduced as well. However, replacing CS with RGA up to 80% and 100% caused a reduction in compressive strength, dry density, and UPV and an increase in water absorption and drying shrinkage of concretes. Closed correlations among the above-mentioned concrete properties were also found in this study. All of the concrete samples obtained compressive strength values higher than the target strength (≥ 25 MPa) and they were classified as very good quality concretes with UPV values of above 4100 m/s. The experimental results demonstrate a high possibility of producing normal-strength concrete with a fine aggregate of RGA as either partially or fully replacement of CS. This also provides an environmentally-friendly solution for recycling waste medical glass in construction materials for sustainable development.
The present research aims to investigate the influence of the ratio of reinforced concrete layer height to total height (h/H) on the mechanical properties of functionally graded concrete (FGC) containing fly ash (Fa) and polypropylene (PP) fiber. All FGC samples were prepared with a constant water-to-cementitious materials ratio of 0.36 and ordinary Portland cement was replaced with Fa at 20% by mass. The reinforcement layer of FGC was enhanced with PP fiber inclusion (0.3% by volume of concrete). The effect of various h/H ratios of 0.25, 0.50, and 0.75 on the mechanical properties of the FGC samples was evaluated. The results show that flexural strength, flexural toughness, and compressive strength values of the FGC with PP fiber were higher than those of FGC without PP fiber at the age of 28 days regardless of Fa replacement. The experimental results also pointed out that the FGC samples prepared using an h/H ratio of 0.50 were beneficial in terms of mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.