Document deskewing is a fundamental problem in document image processing. While existing methods have limitations, such as Hough Line Transformation that can deskew images upside down, and Deep Learning models that require huge amounts of human labour and computational resources and still fail to deskew while taking care of orientation, OCR-based methods also struggle to read text when it is tilted. In this paper, we propose a novel, simple, cost-effective deep learning method for fixing the skew and orientation of documents. Our approach reduces the search space for the machine learning model to predict whether an image is upside down or not, avoiding the huge search space of predicting an angle between 0 and 360. We finetuned a MobileNetV2 model, which was pre-trained on imagenet, using only 1000 images and achieved good results. This method is useful for automation-based tasks, such as data extraction using OCR technology, and can greatly reduce manual labour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.