The spread of coronavirus disease 2019 (COVID-19) continues to grow exponentially in most countries, posing an unprecedented burden on the healthcare sector and the world economy. Previous respiratory virus outbreaks, such as severe acute respiratory syndrome (SARS), pandemic H1N1 and Middle East respiratory syndrome (MERS), have provided significant insights into preparation and provision of intensive care support including extracorporeal membrane oxygenation (ECMO). Many patients have already been supported with ECMO during the current COVID-19 pandemic, and it is likely that many more may receive ECMO support, although, at this point, the role of ECMO in COVID-19-related cardiopulmonary failure is unclear. Here, we review the experience with the use of ECMO in the past respiratory virus outbreaks and discuss potential role for ECMO in COVID-19.
To evaluate the involvement of translation initiation factors eIF4E and eIFiso4E in Chilli veinai mottle virus (ChiVMV) infection in pepper, we conducted a genetic analysis using a segregating population derived from a cross between Capsicum annuum 'Dempsey' containing an eIF4E mutation (pvr1(2)) and C. annuum 'Perennial' containing an eIFiso4E mutation (pvr6). C. annuum 'Dempsey' was susceptible and C. annuum 'Perennial' was resistant to ChiVMV. All F(1) plants showed resistance, and F(2) individuals segregated in a resistant-susceptible ratio of 166:21, indicating that many resistance loci were involved. Seventy-five F(2) and 329 F(3) plants of 17 families were genotyped with pvr1(2) and pvr6 allele-specific markers, and the genotype data were compared with observed resistance to viral infection. All plants containing homozygous genotypes of both pvr1(2) and pvr6 were resistant to ChiVMV, demonstrating that simultaneous mutations in eIF4E and eIFiso4E confer resistance to ChiVMV in pepper. Genotype analysis of F2 plants revealed that all plants containing homozygous genotypes of both pvr1(2) and pvr6 showed resistance to ChiVMV. In protein-protein interaction experiments, ChiVMV viral genome-linked protein (VPg) interacted with both eIF4E and eIFiso4E. Silencing of eIF4E and eIFiso4E in the VIGS experiment showed reduction in ChiVMV accumulation. These results demonstrated that ChiVMV can use both eIF4E and eIFiso4E for replication, making simultaneous mutations in eIF4E and eIFiso4E necessary to prevent ChiVMV infection in pepper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.