Polysaccharides are natural biological molecules that have numerous advantages for theranostics, the integrated approach of therapeutics and diagnostics. Their derivable reactive groups can be leveraged for functionalization with a nanoparticle-enabling conjugate, therapeutics (small molecules, proteins, peptides, photosensitizers) and/or diagnostic agents (imaging agents, sensors). In addition, polysaccharides are diverse in size and charge, biodegradable and abundant and show low toxicity in vivo. Polysaccharide-based nanoparticles are increasingly being used as platforms for simultaneous drug delivery and imaging and are therefore becoming popular theranostic nanoparticles. The review focuses on the method of nanoparticle formation (self-assembled, physical or chemical cross-linked) when engineering polysaccharide-based nanoparticles for theranostic nanomedicine. We highlight recent examples of polysaccharides-based theranostic systems from literature and their potential for use in the clinic, particularly chitosan- and hyaluronic acid-based NPs.
Photothermal therapy (PTT) has attracted extensive research attention as a noninvasive and selective treatment strategy for numerous cancers. PTT functions via photothermal effects induced by converting light energy into heat on near-infrared laser irradiation. Despite the great advances in PTT for cancer treatment, the photothermal therapeutics using laser devise only or non-specific small molecule PTT agents has been limited because of its low photothermal conversion efficiency, concerns about the biosafety of the photothermal agents, their low tumor accumulation, and a heat resistance of specific types of cancer. Using nanomaterials as PTT agents themselves, or for delivery of PTT agents, offers improved therapeutic outcomes with fewer side effects through enhanced photothermal conversion efficiency, accumulation of the PTT agent in the tumor tissue, and, by extension, through combination with other therapies. Herein, we review PTT’s current clinical progress and present the future outlooks for clinical applications. To better understand clinical PTT applications, we describe nanomaterial-mediated photothermal effects and their mechanism of action in the tumor microenvironment. This review also summarizes recent studies of PTT alone or in combination with other therapies. Overall, innovative and strategically designed PTT platforms are promising next-generation noninvasive cancer treatments to move closer toward clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.