In this paper, we propose an algorithm for contrast enhancement based on Adaptive Histogram Equalization (AHE) to improve image quality. Most histogram-based contrast enhancement methods have problems with excessive or low image contrast enhancement. This results in unnatural output images and the loss of visual information. The proposed method manipulates the slope of the input of the Probability Density Function (PDF) histogram. We also propose a pixel redistribution method using convolution to compensate for excess pixels after the slope modification procedure. Our method adaptively enhances the contrast of the input image and shows good simulation results compared with conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.