Earth’s rapid spin, modest tilt, and nearly circular orbit ensure that the sun always appears to move forward, rising in the east and setting in the west. However, for some exoplanets, solar motion can reverse causing alien suns to apparently move backward. Indeed, this dramatic motion marginally occurs for Mercury in our own solar system. For exoplanetary observers, we study the scope of solar motion as a function of eccentricity, spin–orbit ratio, obliquity, and nodal longitude, and we visualize the motion in spatial and spacetime plots. For zero obliquity, reversals occur when a planet’s spin angular speed is between its maximum and minimum orbital angular speeds, and we derive exact nonlinear equations for eccentricity and spin–orbit to bound reversing and non-reversing motion. We generalize the notion of solar day to gracefully handle the most common reversals.
Certain systems do not completely return to themselves when a subsystem moves through a closed circuit in physical or parameter space. A geometric phase, known classically as Hannay's angle and quantum mechanically as Berry's phase, quantifies such anholonomy. We study the classical example of a bead sliding frictionlessly on a slowly rotating hoop. We elucidate how forces in the inertial frame and pseudo-forces in the rotating frame shift the bead. We then computationally generalize the effect to arbitrary-not necessarily adiabatic-motions. We thereby extend the study of this classical geometric phase from theory to experiment via computation, as we realize the dynamics with a simple apparatus of wet ice cylinders sliding on a polished metal plate in 3D printed plastic channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.