Although several studies have been performed to detect cancer using canine olfaction, none have investigated whether canine olfaction trained to the specific odor of one cancer is able to detect odor related to other unfamiliar cancers. To resolve this issue, we employed breast and colorectal cancer in vitro, and investigated whether trained dogs to odor related to metabolic waste from breast cancer are able to detect it from colorectal cancer, and vice versa. The culture liquid samples used in the cultivation of cancerous cells (4T1 and CT26) were employed as an experimental group. Two different breeds of dogs were trained for the different cancer odor each other. The dogs were then tested using a double-blind method and cross-test to determine whether they could correctly detect the experimental group, which contains the specific odor for metabolic waste of familiar or unfamiliar cancer. For two cancers, both dogs regardless of whether training or non-training showed that accuracy was over 90%, and sensitivity and specificity were over 0.9, respectively. Through these results, it was verified that the superior olfactory ability of dogs can discriminate odor for metabolic waste of cancer cells from it of benign cells, and that the specific odor for metabolic waste of breast cancer has not significant differences to it of colorectal cancer. That is, it testifies that metabolic waste between breast and colorectal cancer have the common specific odor in vitro. Accordingly, a trained dogs for detecting odor for metabolic waste of breast cancer can perceive it of colorectal cancer, and vice versa. In order to the future work, we will plan in vivo experiment for the two cancers and suggest research as to what kind of cancers have the common specific odor. Furthermore, the relationship between breast and colorectal cancer should be investigated using other research methods.
In this paper we present an immersive brain computer interface (BCI) where we use a virtual reality head-mounted display (VRHMD) to invoke SSVEP responses. Compared to visual stimuli in monitor display, we demonstrate that visual stimuli in VRHMD indeed improve the user engagement for BCI. To this end, we validate our method with experiments on a VR maze game, the goal of which is to guide a ball into the destination in a 2D grid map in a 3D space, successively choosing one of four neighboring cells using SSVEP evoked by visual stimuli on neighboring cells. Experiments indicate that the averaged information transfer rate is improved by 10% for VRHMD, compared to the case in monitor display and the users feel easier to play the game with the proposed system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.