Anaplastic thyroid cancer (ATC) and advanced differentiated thyroid cancers (DTCs) show fatal outcomes, unlike DTCs. Here, we demonstrate mutational landscape of 27 ATCs and 86 advanced DTCs by massively-parallel DNA sequencing, and transcriptome of 13 ATCs and 12 advanced DTCs were profiled by RNA sequencing. TERT , AKT1 , PIK3CA , and EIF1AX were frequently co-mutated with driver genes ( BRAF V600E and RAS ) in advanced DTCs as well as ATC, but tumor suppressors (e.g., TP53 and CDKN2A ) were predominantly altered in ATC. CDKN2A loss was significantly associated with poor disease-specific survival in patients with ATC or advanced DTCs, and up-regulation of CD274 (PD-L1) and PDCD1LG2 (PD-L2). Transcriptome analysis revealed a fourth molecular subtype of thyroid cancer (TC), ATC-like, which hardly reflects the molecular signatures in DTC. Furthermore, the activation of JAK-STAT signaling pathway could be a potential druggable target in RAS -positive ATC. Our findings provide insights for precision medicine in patients with advanced TCs.
Synergistic effects of BRAFV600E and TERT promoter mutations on the poor clinical outcomes in papillary thyroid cancer (PTC) have been demonstrated. The potential mechanism of this phenomenon has been proposed: MAPK pathway activation by the BRAFV600E mutation may upregulate E-twenty six (ETS) transcription factors, increasing TERT expression by binding to the ETS-binding site generated by the TERT promoter mutation; however, it has not yet been fully proven. This article provides transcriptomic insights into the interaction between BRAFV600E and TERT promoter mutations mediated by ETS factors in PTC. RNA sequencing data on 266 PTCs from The Cancer Genome Atlas and 65 PTCs from our institute were analyzed for gene expression changes and related molecular pathways, and the results of transcriptomic analyses were validated by in vitro experiments. TERT mRNA expression was increased by the coexistence of BRAFV600E and TERT promoter mutations (fold change, 16.17; q-value = 7.35 × 10−12 vs no mutation). In the ETS family of transcription factors, ETV1, ETV4 and ETV5 were upregulated by the BRAFV600E/MAPK pathway activation. These BRAFV600E-induced ETS factors selectively bound to the mutant TERT promoter. The molecular pathways activated by BRAFV600E were further augmented by adding the TERT promoter mutation, and the pathways related to immune responses or adhesion molecules were upregulated by TERT expression. The mechanism of the synergistic effect between BRAFV600E and TERT promoter mutations on cancer invasiveness and progression in PTC may be explained by increased TERT expression, which may result from the BRAF-induced upregulation of several ETS transcription factors.
Bisphenol A (BPA) is a widely used endocrine disruptor. Recent epidemiologic results have suggested an association between exposure to BPA and cardiovascular disease, type 2 diabetes, and obesity. We investigated the in vivo effects of long-term oral exposure to BPA on insulin resistance and glucose intolerance. In the present study, 4-to 6-week-old male mice on a high-fat diet (HFD) were treated with 50 mg/kg body weight per day of BPA orally for 12 weeks. Long-term oral exposure to BPA along with an HFD for 12 weeks induced glucose intolerance in growing male mice. Intraperitoneal glucose tolerance tests showed that the mice that received an HFD and BPA exhibited a significantly larger area under the curve than did those that received an HFD only (119.9G16.8 vs 97.9G18.2 mM/min, PZ0.027). Body weight, percentage of white adipose tissue, and percentage of body fat did not differ between the two groups of mice. However, treatment with BPA reduced Akt phosphorylation at position Thr308 and GSK3b phosphorylation at position Ser9 in skeletal muscle. BPA tended to decrease serum adiponectin levels and to increase serum interleukin 6 and tumor necrosis factor a, although these findings were not statistically significant. Treatment with BPA did not induce any detrimental changes in the islet area or morphology or the insulin content of b cells. In conclusion, long-term oral exposure to BPA induced glucose intolerance and insulin resistance in growing mice. Decreased Akt phosphorylation in skeletal muscle by way of altered serum adipocytokine levels might be one mechanism by which BPA induces glucose intolerance.
Purpose: Thyroid-stimulating hormone (TSH) suppression is widely used to treat well-differentiated thyroid cancer, whereas its role in poorly differentiated thyroid cancer (PDTC) is undetermined. Besides thyrocytes, TSH also binds to stromal cells, comprising tumor microenvironments. This study aimed to investigate the effects of TSH on tumor microenvironments in PDTC. Experimental Design: An ectopic tumor model using PDTC cells (BHP10-3SCp and FRO), which exhibit TSH/ cAMP-independent cell growth, was treated with TSH. IHC was performed using tissue microarrays from 13 PDTCs. Results: TSH treatment significantly enhanced tumor growth of PDTCs with increased vascularity but not that of breast cancer cells, suggesting this effect is unique to thyroid cancer cells, not stromal cells. TSH significantly upregulated VEGF-A and CXCL8 expressions in BHP10-3SCp cells via AKT and ERK signaling, resulting in higher concentrations of VEGF-A and CXCL8 in conditioned medium of TSH-treated BHP10-3SCp cells (TSH-CM) compared with controls. TSH-CM treatment enhanced tube formation potentials of endothelial cells, and blocking VEGF and/or CXCL8 reduced them. Blocking VEGF and/or CXCL8 also reduced TSHdependent tumor growth with reduced tumor vasculature in vivo. TSH-treated tumors showed increased macrophage densities, and macrophage inhibition reduced TSH-dependent tumor growth in vivo. In human PDTCs, preoperative TSH levels were positively associated with VEGF-A and tumor size, and the expression of VEGF-A was positively correlated with CD31, CD163, and CXCL8, and their clinical poor prognosis. Conclusions: Aberrant TSH receptor signaling modulates tumor angiogenesis by stimulating VEGF-A and CXCL8 secretion from PDTC cells and enhances tumor growth; thus, TSH suppression is beneficial for treating PDTCs.
Introduction Spermatogenesis involves the processes of germ cell proliferation and differentiation by mitosis and meiosis. During spermatogenesis, the chromatin of the spermatogenic cells is profoundly reorganized and somatic histones are partly replaced by testis-specifichistones [1]. The somatic histones that are present at the onset of the differentiation process undergo several transitions. In mature spermatozoa, protamines consist of the main chromosomal component [2,3]. In human beings, unlike other mammals including the mouse, core histones (H2A, H2B, H3 and H4) are not displaced completely during spermiogenesis and account for approximately 15% of the basic chromosomal proteins within the mature sperm [4][5][6].Human testis-specific histones are detected in spermatogonia as well as mature sperm [1,[7][8][9][10][11]. The functions of these proteins may be similar to their somatic counterparts, but this remains to be fully elucidated. Some functions of testis-specific histones during spermatogenesis have been previously reported [12][13][14][15]. Importantly, a decrease in testis-specific histone can result in sperm morphological abnormalities and male subfertility [16,17]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.