This study analyzed the flora, life form, and vegetation of the Nakdong River wetland. Vegetation analysis was performed on 37 plots using the phytosociological method of the Zürich-Montpellier School. PCA analysis was conducted by using the vegetation data (ground cover of class; 1~9) of 37 plots surveyed by phytosociological method. PCA (Principal Component Analysis) was used to statistically analyze the objectivity of the community classification and the character species. The traditional classification and mathematical statistic methods were used. A total of 82 taxa belonging to 28 families, 65 genera, 72 species, 2 subspecies, and 8 varieties were present in the vegetation of the survey area. The life form was analyzed to be the Th-R5-D4-e type. The communities were classified into seven communities: Miscanthus sacchariflorus community, Phragmites communis community, Phragmites communis–Carex dispalata community, Ulmus parvifolia community, Zizania latifolia community, Setaria viridis community, and Salix koriyanagi–Salix chaenomeloides community. As a result of PCA analysis, it was classified into seven communities. Seven communities were analyzed, where the most dominant species (M. sacchariflorus, P. communis, C. dispalata, U. parvifolia, Z. latifolia, S. viridis, S. koriyanagi, S. chaenomeloides) of each community were examined as character species. Another species is analyzed as Salix koreensis. Of the sixteen M. sacchariflorus communities, Pterygopleurum neurophyllum was present in six plots (A-2 group) but not in ten plots (A-1 group). These two groups showed differences in coverage and the number of occurring species. As for the relative net contribution degree (r-NCD) in the A-2 group, most species showed low r-NCD except for M. sacchariflorus, which showed an r-NCD of 100. The r-NCDs in the A-1 group were as follows: Miscanthus sacchariflorus (100), P. neurophyllum (21.74), and Persicaria perfoliata (10.14). Therefore, P. neurophyllum is difficult to grow in the A-1 group. As a result, it is thought that the high density of M. sacchariflorus affects the growth and distribution of P. neurophyllum. In order to expand and maintain P. neurophyllum, the habitat environment needs to be altered by adjusting the density of M. sacchariflorus.
Sedirea japonica is becoming endangered, and even extinct, due to habitat destruction and illegal collection, and the development of an optimized artificial propagation system is necessary for its conservation and reintroduction. Thus, the effects of plant growth medium strength (Murashige and Skoog (MS) and Hyponex media) and the addition of activated charcoal (AC) and organic supplements on seedling growth of S. japonica were investigated through in vitro seed culture. The results showed that seedling growth was higher in half-strength (1/2) media than in full-strength media. After the addition of AC, the highest leaf area (2.14 cm2) was recorded in the seedlings grown in 1/2 Hyponex medium, and after the addition of organic supplements, root development increased regardless of the media type. Among the sixteen suitable media tested at later seedling growth stages, 1/2 MS medium with the addition of 0.6 g·L−1 AC, 30 g·L−1 banana homogenate and 10 g·L−1 apple homogenate was generally effective in fresh weight (6.13 g) and root length (9.59 cm). We demonstrated which organic supplements are preferred for in vitro growth of seedlings developed from S. japonica protocorms by asymbiotic seed culture, which can be used for mass production and conservation of this rare epiphytic orchid.
No natural habitat of Sedirea japonica has been found in Korea for the past 20 years. This study was conducted to provide basic physiological data for the conservation strategy of this endangered plant in response to climate change. Soil fruit daylight system (SFDS) chambers were used and four treatment groups (2.6LVPD, 2.6HVPD, 8.5LVPD, and 8.5HVPD) were designed based on the RCP scenario (RCP 2.6, and 8.5) and VPD conditions (low VPD; LVPD, and high VPD; HVPD). Air dryness was induced in the HVPD groups during the daytime by increasing the atmospheric vapor pressure deficit (VPD). There was no significant difference based on the RCP scenario. However, the difference between LVPD and HVPD was considerable. Total CO2 uptake and transpiration were lower than those of LVPD due to the duration decrease of Phase I in 2.6HVPD and 8.5HVPD. There was a reduction in total biomass, leaf thickness, length, and the number of leaves. ABS/RC, DI0/RC, φD0, VK, VJ, and other chlorophyll fluorescence markers increased. φP0, RE0/RC, φE0, ψE0, φR0, RC/CS0, Sm, N, PIabs, DFabs, SFIabs, and PIabs,Total declined. Daily drought stresses impact the physiological mechanisms occurring at nighttime. The defense mechanisms against drought stress occur by conserving water by controlling the stomata, inactivating the reaction center, and increasing the dissipated energy through heat. In summary, S. japonica is flexible against drought stress.
This study was conducted to evaluate the physiological and growth responses of Sedirea japonica cultured in chambers under RCP 6.0 and different light conditions. S. japonica was grown in a soil–plant daylight system chamber under two treatments, a control (CO2 = 400 ppm) and a climate change treatment (CCT) (CO2 = 650 ppm, temperature = control + 3 °C), and three different shading treatments (60%, 90%, and no-shading). S. japonica showed the characteristics of typical Crassulacean acid metabolism (CAM) plants. As the shading rate increased, it increased chlorophyll content, leaf area, and leaf dry weight to efficiently absorb and use light. The CCT had a lower CO2 absorption rate, stomatal conductance, and growth rate and slightly higher water utilization efficiency than the control. This was because stomatal closure occurred in the CCT to reduce water loss due to a relatively higher temperature. As CO2 fixation decreased and consumption increased due to respiration, the overall growth was inhibited. The CCT without shading revealed a dynamic photoinhibition phenomenon showing a significant increase in ABS/RC, TRo/RC, ETo/RC, and DIo/RC and a decrease in PI ABS and DF ABS. In this group, leaf, root, and total dry weight, chlorophyll content, and carotenoid content were the worst growth indices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.