Many types of mammalian cells can aggregate and differentiate into 3‐D multicellular spheroids when cultured in suspension or a nonadhesive environment. Compared to conventional monolayer cultures, multicellular spheroids resemble real tissues better in terms of structural and functional properties. Multicellular spheroids formed by transformed cells are widely used as avascular tumor models for metastasis and invasion research and for therapeutic screening. Many primary or progenitor cells on the other hand, show significantly enhanced viability and functional performance when grown as spheroids. Multicellular spheroids in this aspect are ideal building units for tissue reconstruction. Here we review the current understanding of multicellular spheroid formation mechanisms, their biomedical applications, and recent advances in spheroid culture, manipulation, and analysis techniques.
The latent membrane protein (LMP1) of Epstein-Barr virus (EBV) is expressed in EBV-associated nasopharyngeal carcinoma, which is notoriously metastatic. Although it is established that LMP1 represses E-cadherin expression and enhances the invasive ability of carcinoma cells, the mechanism underlying this repression remains to be elucidated. In this study, we demonstrate that LMP1 induces the expression and activity of the DNA methyltransferases 1, 3a, and 3b, using real-time reverse transcription-PCR and enzyme activity assay. This results in hypermethylation of the E-cadherin promoter and down-regulation of E-cadherin gene expression, as revealed by methylation-specific PCR, real-time reverse transcription-PCR and Western blotting data. The DNA methyltransferase inhibitor, 5-Aza-2dC, restores E-cadherin promoter activity and protein expression in LMP1-expressing cells, which in turn blocks cell migration ability, as demonstrated by the Transwell cell migration assay. Our findings suggest that LMP1 down-regulates E-cadherin gene expression and induces cell migration activity by using cellular DNA methylation machinery.
A spheroid is an in vitro multicellular aggregate that provides a microenvironment resembling that of normal tissue in vivo. Although cell adhesion molecules such as integrins and cadherins have been implicated in participating in the process of spheroid formation, little is known about the timing of their action. In this study, we have employed an image-based quantitative method to investigate the compactness of cell aggregates during hepatoma spheroid formation in a dynamic fashion. By modulating beta1-integrin and E-cadherin activity with specific blocking antibodies, ion chelators, and RGD-sequence-containing peptides, we show that these cell adhesion molecules mediate the formation of spheroids through the establishment of complex cell-cell and cell-extracellular matrix (ECM) interactions. The dynamics of spheroid formation can be separated into three stages. In the first stage, ECM fibers act as a long-chain linker for the attachment of dispersed single-cells to form loose aggregations through the binding of integrins. This is followed by a delay period in which cell aggregates pause in compaction, presumably because of the accumulation of sufficient amounts of E-cadherins. In the third stage, strong homophilic interaction of E-cadherins is a major factor for the morphological transition from loose cell aggregates to compact spheroids. These findings thus provide comprehensive information on the molecular mechanisms and dynamics of hepatoma spheroid formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.