2D transition metal dichalcogenides (TMDCs) have emerged as promising candidates for post‐silicon nanoelectronics owing to their unique and outstanding semiconducting properties. However, contact engineering for these materials to create high‐performance devices while adapting for large‐area fabrication is still in its nascent stages. In this study, graphene/Ag contacts are introduced into MoS2 devices, for which a graphene film synthesized by chemical vapor deposition (CVD) is inserted between a CVD‐grown MoS2 film and a Ag electrode as an interfacial layer. The MoS2 field‐effect transistors with graphene/Ag contacts show improved electrical and photoelectrical properties, achieving a field‐effect mobility of 35 cm2 V−1 s−1, an on/off current ratio of 4 × 108, and a photoresponsivity of 2160 A W−1, compared to those of devices with conventional Ti/Au contacts. These improvements are attributed to the low work function of Ag and the tunability of graphene Fermi level; the n‐doping of Ag in graphene decreases its Fermi level, thereby reducing the Schottky barrier height and contact resistance between the MoS2 and electrodes. This demonstration of contact interface engineering with CVD‐grown MoS2 and graphene is a key step toward the practical application of atomically thin TMDC‐based devices with low‐resistance contacts for high‐performance large‐area electronics and optoelectronics.
2D InSe is one of the semimetal chalcogenides that has been recently given attention thanks to its excellent electrical properties, such as high mobility near 1000 cm 2 V −1 s −1 and moderate band gap of ≈1.26 eV suitable for IR detection. Here, high-performance visible to near-infrared (470-980 nm wavelength (λ)) photodetectors using surface-doped InSe as a channel and few-layer graphenes (FLG) as electrodes are reported, where the InSe top region is relatively p-doped using AuCl 3. The surface-doped InSe photodetectors show outstanding performance, achieving a photoresponsivity (R) of ≈19 300 A W −1 and a detectivity (D*) of ≈3 × 10 13 Jones at λ = 470 nm, and R of ≈7870 A W −1 and D* of ≈1.5 × 10 13 Jones at λ = 980 nm, superior to previously reported 2D materialbased IR photodetectors operating without an applied gate bias. Surface doping using AuCl 3 renders a band bending at the junction between the InSe surface and the top FLG contact, which facilitates electron-hole pair separation and immediate photodetection. Multiple doped or undoped InSe photodetectors with different device structures are investigated, providing insight into the photodetection mechanism and optimizing performance. Encapsulation with hexagonal boron nitride dielectric also allows for 3-month stability.
Chemical doping of transition metal dichalcogenides (TMDCs) has drawn significant interest because of its applicability to the modification of electrical and optical properties of TMDCs. This is of fundamental and technological importance for high-efficiency electronic and optoelectronic devices. Here, we present a simple and facile route to reversible and controllable modulation of the electrical and optical properties of WS and MoSvia hydrazine doping and sulfur annealing. Hydrazine treatment of WS improves the field-effect mobilities, on/off current ratios, and photoresponsivities of the devices. This is due to the surface charge transfer doping of WS and the sulfur vacancies formed by its reduction, which result in an n-type doping effect. The changes in the electrical and optical properties are fully recovered when the WS is annealed in an atmosphere of sulfur. This method for reversible modulation can be applied to other transition metal disulfides including MoS, which may enable the fabrication of two-dimensional electronic and optoelectronic devices with tunable properties and improved performance.
In nature, the compound eyes of arthropods have evolved towards a wide field of view (FOV), infinite depth of field and fast motion detection. However, compound eyes have inferior resolution when compared with the camera-type eyes of vertebrates, owing to inherent structural constraints such as the optical performance and the number of ommatidia. For resolution improvements, in this paper, we propose COMPUtational compound EYE (COMPU-EYE), a new design that increases acceptance angles and uses a modern digital signal processing (DSP) technique. We demonstrate that the proposed COMPU-EYE provides at least a four-fold improvement in resolution.
Reliable and controllable doping of transition metal dichalcogenides (TMDCs) is a mandatory requirement for practical large-scale electronic applications. However, most of the literature on the doping methodologies of TMDCs has focused on n-type doping and multilayer TMDC rather than a monolayer one enabling large-scale growth. Herein, we report substitutional fluorine doping of a chemical vapor deposition (CVD)-grown molybdenum disulfide (MoS2) monolayer film using a delicate SF6 plasma treatment. Our SF6-treated MoS2 monolayer shows a p-type doping effect with fluorine substitution. The doping concentration is controlled by the plasma treatment time (2–4.9 atom %) while maintaining the structural integrity of the MoS2 monolayer. Such reliable and tunable substitutional doping is attributed to preventing direct ion bombardment to the MoS2 monolayer by our gentle plasma treatment system. Finally, we fabricated MoS2 homojunction flexible inverter device arrays based on the pristine and SF6-treated MoS2 monolayer. A clear switching behavior is observed, and the voltage gain is approximately 8 at an applied V DD of 2 V, which is comparable to that of CVD-grown MoS2-based inverter devices reported previously. Obtained voltage gain is also stable even after 500 bending cycles at an applied strain of 0.5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.