We performed an offshore experiment with a new marine small loop electromagnetic (EM) survey system, which was developed primarily for exploration of seafloor hydrothermal deposits. The system is a multi-frequency loop EM system designed to endure high pressure in deep sea up to 2000 m. In order to maintain altitude of the system from the seafloor in rough seafloor topography condition, the system was connected rigidly to ROV (Remotely Operated Vehicle) which tows the system. We performed a test with the new loop EM system by keeping altitude of ROV 2 m above from the seafloor at a depth of 300 m near Tonga offshore. The ROV position and attitude while moving (pitch, roll, yaw) and CTD (Conductivity, Temperature, Depth) data are also recorded simultaneously with electromagnetic responses. Experimental results showed that electromagnetic anomaly was clearly identified at the location of metallic object, and the pattern of the EM responses matches well with the theoretical responses from a 3-D integral equation EM modeling code. With the test in Tonga offshore, we confirmed that the method of operation of the EM survey system by ROV was readily feasible, and the system could detect actual seafloor hydrothermal deposits in the highly conductive seafloor environment.
Abstract:We analyzed response patterns of test field data acquired with new small loop electromagnetic (EM) system using three-dimensional (3D) electromagnetic modeling code. The size and shape of a conductor was adopted as experimental parameters for EM modeling to understand influencing factors of the response patterns due to a metallic object on the seafloor. Obtaining the responses for four models of difference sizes and shapes through 3D EM modeling, we confirmed that the shape of the object have a more critical factor on the response pattern than size. We also calculated "ppm" values with respect to different altitudes of the sensor and source frequencies. The modeling results show that the consistency of sensor altitude is important and imaginary part of ppm response is more sensitive than real part. We also visualized the contour map of the real and imaginary part of ppm value as a function of frequency and altitude so that we can estimate proper altitude for source frequency band of our survey system. The results of this paper are anticipated to give proper parameters in survey construction for seafloor massive sulfide deposit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.