Porous polyimide (PI) films are a promising low-k dielectric material for high-frequency data transmission with low signal attenuation. Pores are generated by non-solvent induced phase separation (NIPS) during phase inversion of polymer solution via non-solvent accumulation and solvent diffusion. In this study, aromatic PI was employed as a matrix for NIPS, and the influence of polymer concentration and liquid—liquid demixing time on the morphology of pores in the PI films was investigated. This ensured control over the porous structure of the PI film and provided desirable dielectric properties in a broad frequency range of 100 Hz–30 MHz (1.99 at 30 MHz) and thermal stability (Td5% > 576 °C, Tg > 391 °C). This study addresses the effect of polymer concentration and coagulation time on the morphology and physical properties of PI sponge films and provides guidance on the design and optimization of architectures for polymeric materials requiring pore modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.