Three-terminal (3-T) thyristor random-access memory is explored for a next-generation high-density nanoscale vertical cross-point array. The effects of standby voltages on the device are thoroughly investigated in terms of gate–cathode voltage (VGC,ST) and anode–cathode voltage (VAC,ST) in the standby state for superior data retention characteristics and low-power operation. The device with the optimized VGC,ST of − 0.4 V and VAC,ST of 0.6 V shows the continuous data retention capability without refresh operation with a low standby current of 1.14 pA. In addition, a memory array operation scheme of 3-T TRAM is proposed to address array disturbance issues. The presented array operation scheme can efficiently minimize program, erase and read disturbances on unselected cells by adjusting gate–cathode voltage. The standby voltage turns out to be beneficial to improve retention characteristics: over 10 s. With the proposed memory array operation, 3-T TRAM can provide excellent data retention characteristics and high-density memory configurations comparable with or surpass conventional dynamic random-access memory (DRAM) technology.
A drain-extended (DE) FinFET with a dual material gate (DMG) and a high-k field plate (FP), named DF-DeFF, is proposed for high-voltage RF applications. The FP induces the charge variation in the drain extension, which appears as either the extended depletion in the gate-off state or the electron accumulation in the gate-on state. Along with the FP, the DMG forms a step-like potential variation along the channel, which leads to electron acceleration and the screening effect on the drain-to-source voltage (VDS). These effects give significant advantages to the DC characteristics, including breakdown voltage (VBD) and on-resistance (Ron), and the RF characteristics, including transconductance (gm) and output-resistance (ro). Compared to the latest high-voltage RF FinFETs, the DF-DeFF shows a drastic improvement in the major performance indicators such as VBD, cut-off frequency (fT), and maximum oscillation frequency (fMAX). These results indicate that DF-DeFF is a FinFET with sufficient competitiveness even in high voltage circumstances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.