Diabetic macular edema (DME) is the abnormal accumulation of fluid in the subretinal or intraretinal spaces in the macula in patients with diabetic retinopathy and leads to severely impaired central vision. Technical developments in retinal imaging systems have led to many advances in the study of DME. In particular, optical coherence tomography (OCT) can provide longitudinal and microstructural analysis of the macula. A comprehensive review was provided regarding the role of inflammation using OCT-based classification of DME and current and ongoing therapeutic approaches. In this review, we first describe the pathogenesis of DME, then discuss the classification of DME based on OCT findings and the association of different types of DME with inflammation, and finally describe current and ongoing therapeutic approaches using OCT-based classification of DME. Inflammation has an important role in the pathogenesis of DME, but its role appears to differ among the DME phenotypes, as determined by OCT. It is important to determine how the different DME subtypes respond to intravitreal injections of steroids, antivascular endothelial growth factor agents, and other drugs to improve prognosis and responsiveness to treatment.
BackgroundProtein tyrosine phosphatase receptor delta (PTPRD) is frequently inactivated in various types of cancers. Here, we explored the underlying mechanism of PTPRD-loss-induced cancer metastasis and investigated an efficient treatment option for PTPRD-inactivated gastric cancers (GCs).MethodsPTPRD expression was evaluated by immunohistochemistry. Microarray analysis was used to identify differentially expressed genes in PTPRD-inactivated cancer cells. Quantitative reverse transcription (qRT-PCR), western blotting, and/or enzyme-linked immunosorbent assays were used to investigate the PTPRD-CXCL8 axis and the expression of other related genes. An in vitro tube formation assay was performed using HUVECs. The efficacy of metformin was assessed by MTS assay.ResultsPTPRD was frequently downregulated in GCs and the loss of PTPRD expression was associated with advanced stage, worse overall survival, and a higher risk of distant metastasis. Microarray analysis revealed a significant increase in CXCL8 expression upon loss of PTPRD. This was validated in various GC cell lines using transient and stable PTPRD knockdown. PTPRD-loss-induced angiogenesis was mediated by CXCL8, and the increase in CXCL8 expression was mediated by both ERK and STAT3 signaling. Thus, specific inhibitors targeting ERK or STAT3 abrogated the corresponding signaling nodes and inhibited PTPRD-loss-induced angiogenesis. Additionally, metformin was found to efficiently inhibit PTPRD-loss-induced angiogenesis, decrease cell viability in PTPRD-inactivated cancers, and reverse the decrease in PTPRD expression.ConclusionsThus, the PTPRD-CXCL8 axis may serve as a potential therapeutic target, particularly for the suppression of metastasis in PTPRD-inactivated GCs. Hence, we propose that the therapeutic efficacy of metformin in PTPRD-inactivated cancers should be further investigated.
Atherosclerosis is a chronic inflammatory disease, which is associated with increased expression of adhesion molecules and monocyte recruitment into the arterial wall. This study evaluated whether hexane extracts from the edible part (DB-H1) or bark region (DB-H2) of Dioscorea. batatas Decne have anti-atherosclerotic properties in vivo and in vitro experiments. We also identified bioactive components in the hexane extracts. Thirty-six apolipoprotein E (ApoE(-/-) ) mice and 12 control (C57BL/6J) mice were given a Western-type diet for 11 or 21 wk. To examine the effects of yam extracts on lesion development, ApoE(-/-) mice were orally administered DB-H1 or DB-H2 for the duration of the study (200 mg/kg b.w./day, 3 times per wk). Both DB-H1 and DB-H2 significantly reduced the total atherosclerotic lesion area in the aortic root. In addition, plasma concentrations of total cholesterol, oxidized-low-density lipoprotein, and c-reactive protein were decreased by administration of DB-H1 and DB-H2. Consistent with the in vivo observations, DB-H1 and DB-H2 inhibited tumor necrosis factor (TNF)-α-induced vascular cell adhesion molecule-1 expression and adhesion of THP-1 monocytes to TNF-α-activated vascular smooth muscle cells. It was also found that treatment with DB-H1 or DB-H2 resulted in the inhibition nitric oxide (NO) and reactive oxygen species production and iNOS expression in macrophages. Thus, DB-H1 and DB-H2 seem to influence atherosclerosis by affecting the production of inflammatory mediators in vivo. Our results suggest that yam extracts have the potential to be used in the prevention of atherosclerosis.
Macrophage-associated nitric oxide (NO) production plays a crucial role in the pathogenesis of tissue damage. However, negative factors that regulate NO production remains poorly understood despite its significance of NO homeostasis. Here, we show that activating transcription factor 3 (ATF3), a transcriptional regulator of cellular stress responses, was strongly induced in activated macrophages and its depletion resulted in pronounced enhancement of inducible nitric oxide synthase (iNOS) gene expression and subsequently the induction of high levels of NO production. In response to lipopolysaccharide (LPS) and IFN-γ, ATF3 inhibited transcriptional activity of NF-κB by interacting with the N-terminal (1-200 amino acids) of p65 and was bound to the NF-κB promoter, leading to suppression of iNOS gene expression. In addition, inhibitory effects of ATF3 on iNOS and NO secretion were suppressed by inhibitor of casein kinase II (CK2) activity or its knockdown. Moreover, the levels of ATF3 were highly elevated in established cecal ligation and puncture or LPS-injected mice, a model of endotoxemia. ATF3 is also elevated in peritoneal macrophages. Collectively, our findings suggest that ATF3 regulates NO homeostasis by associating with NF-κB component, leading to the repression of its transcriptional activity upon inflammatory signals and points to its potential relevance for the control of cell injuries mediated by NO during macrophage activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.