Colorectal cancer (CRC), one of the most prevalent malignant cancers, has high rates pf incidence and is the fourth leading cause of cancer-related deaths for both men and women worldwide. MicroRNAs (miRNAs) play critical roles in the development of various types of cancers. miRNA‑330-5p has been implicated in the progression of prostate, neuronal and pancreatic cancers by regulating proliferation, migration, invasion and epithelial-mesenchymal transition of cells. The purpose of the present study was to investigate the expression of miR-330-5p in CRC and identify its target gene(s) that may act in CRC tumorigenesis. We found that miR-330-5p expression was significantly lower in CRC tissues than that in adjacent non-tumorous tissues. Furthermore, we identified integrin α5 (ITGA5) as a new target of miR-330-5p and found that it inhibits ITGA5 expression by directly binding to the 3' untranslated region of ITGA5 mRNA. These results suggest that downregulation of miR-330-5p expression may affect CRC development via modulation of ITGA5 expression.
Colorectal cancer (CRC), the third most common cancer worldwide, also has the
highest rate of cancer-related morbidity and mortality. WNT signaling is
initiated by binding of WNT to various receptors, including frizzleds (FZDs),
and plays a critical role in CRC and other tumor development by regulating
proliferation, differentiation, migration, apoptosis, and polarity. Among the
members of the FZD family, FZD6 is broadly expressed in various tissues, and its
overexpression has been reported in several cancers, suggesting an important
role in cancer development. In this study, we investigated the expression of
FZD6 in patients with CRC and found it to be increased in tumors, as compared to
paired adjacent non-tumor tissues. Additionally, we found that FZD6 expression
was negatively regulated by miR199a5p in CRC cells. These results suggest that
overexpression of FZD6, mediated by reduced expression of miR-199a-5p, may play
an important role in the development of CRC. [BMB Reports 2015; 48(6):
360-366]
The microRNAs (miRNAs) are a class of small non-coding RNA molecules that play important roles in cellular processes by regulating gene expression at the post-transcriptional level. In skin biology, several miRNAs have been shown to be associated with differentiation, migration and apoptosis of keratinocytes, and regulation of the hair cycle. Although the biological role of miR-330-5p has been reported in several cancers and cells, the function and molecular mechanism of miR-330-5p in skin keratinocytes have not been identified. In this study, we found that miR-330-5p inhibited the proliferation and migration of mouse keratinocytes. Among the candidate target genes of miR-330-5p searched using microarray analysis, we found that the expression of Pdia3 was directly regulated by miR-330-5p in the mouse keratinocyte. Moreover, inhibition of Pdia3 expression caused decreased proliferation and migration ability of mouse keratinocytes. Additionally, expressions of miR-330-5p and Pdia3 displayed an inverse correlation with respect to the hair cycle stage. These results indicated that regulation of Pdia3 expression by miR-330-5p is important in maintaining the hair cycle through regulation of the proliferation and migration capability of keratinocytes.
Srpr is a gene encoding α subunit of the signal recognition particle receptor which is involved in the targeting and translocation of nascent secretory and membrane proteins to the endoplasmic reticulum. Previous studies showed aberrant expression of Srpr in several cell types with abnormal growth rate. Although Srpr is expressed in various tissues including skin, the role of Srpr in keratinocytes and regulation of its expression by miRNAs have not been studied. In this study, we investigated the role of SRPR and regulation of its expression by miRNA in skin keratinocytes. We found that SRPR was highly expressed in epidermal keratinocytes and regulated keratinocyte proliferation by affecting cell cycle progression. We also demonstrated that miR-330-5p directly inhibits Srpr expression. These data suggest that miR-330-5p-mediated regulation of the SRPR level is needed for the regulation of proliferation of epidermal keratinocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.