The hippocampus represents a key structure in the integration of emotional processing, learning and memory, and reward-related behaviors. While the ventral subdivision of the hippocampus (vHPC) is involved in processing emotional values of salient stimuli and goal-directed behaviors, the dorsal hippocampus (dHPC) plays a critical role in episodic, spatial, and associative memory. In addition, it has been shown that the dHPC is necessary for context- and cue-associated reward behaviors, including the expression of reward seeking. The nucleus accumbens (NAc), a central structure in the mesolimbic reward pathway, integrates the salience of aversive and rewarding stimuli and its activity is sufficient to drive aversive and appetitive behaviors. Recent evidence has demonstrated that dHPC→Nucleus Accumbens (NAc) pathway is necessary for the expression of a conditioned place preference. However, despite years of groundbreaking research and identification of direct projections from the dHPC to the NAc, the sufficiency for dHPC→NAC inputs to drive reinforcement and reward-associated behavior remains to be determined. Here using a wide range of complementary and cutting-edge techniques including behavior, in-vivo manipulation using optogenetics, chemogenetics, brain clearing, local field potential, and fiber photometry recordings, we demonstrate that activation of excitatory projections from the CA1 subregion of the dHPC (dCA1) is sufficient to drive reinforcing behaviors. In addition, we provide strong evidence that this reinforcing behavior is driven by 1) a direct projection from the dCA1 to the NAc and 2) enhanced glutamatergic signaling within the NAc. Furthermore, we uncovered that while dCA1 stimulation increases the activity of both enkephalin- and dynorphin-containing medium spiny neurons in the NAc, the selective activity of dynorphin-containing neurons is necessary for the expression of this reinforcing behavior. Our findings shed light on a novel pathway governing reinforcement and further extend the role of the dHPC on reward seeking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.