Background Mulberry silkworm larvae ( Bombyx mori ) are known as the oldest resource of food and traditional medicine. Although silkworm larvae have been reported to treat various chronic diseases, the effect of fermentation by microorganisms improving the biological activities of silkworm larvae was not reported. In the present study, fermented silkworm larvae was developed via solid-state fermentation with Aspergillus kawachii and investigated its anti-cancer activity in human hepatocellular carcinoma cells. Methods We investigated the anti-cancer effects of unfermented (SEE) and fermented silkworm larva ethanol extract (FSEE) on HepG2 human hepatocellular carcinoma cells as well as compared changes in free amino acid, fatty acid, and mineral contents. Anti-cancer activities were evaluated by SRB staining, cell cycle analysis, Annexin V staining, Hoechst staining, DNA fragmentation analysis and western blot analysis. Fatty acid, free amino acid and mineral contents of SEE and FSEE were determined by gas chromatography, amino acid analyzer and flame atomic absorption spectrophotometer, respectively. Results Compared with SEE, treatment with FSEE resulted in apoptotic cell death in HepG2 cells characterized by G0/G1 phase cell cycle arrest, DNA fragmentation, and formation of apoptotic bodies. Furthermore, FSEE significantly up-regulated pro-apoptotic as well as down-regulated anti-apoptotic proteins in HepG2 cells. However, an equivalent concentration of SEE did not induce cell cycle arrest or apoptosis in HepG2 cells. Moreover, fermentation process by Aspergillus kawachii resulted in enhancement of fatty acid contents in silkworm larvae, whereas amino acid and mineral contents were decreased. Conclusion Collectively, this study demonstrates that silkworm larvae solid state-fermented by Aspergillus kawachii strongly potentiates caspase-dependent and -independent apoptosis pathways in human hepatocellular carcinoma cells by regulating secondary metabolites. Electronic supplementary material The online version of this article (10.1186/s12906-019-2649-7) contains supplementary material, which is available to authorized users.
Euonymus alatus (Thunb.) Sieb., also known as the arrow tree in Korea, is a plant in East Asia used in traditional medicine and food. In particular, the wings of E. alatus are rich in phenolic compounds. This study evaluated the antioxidant, α-glucosidase inhibition, and anti-cancer activities of E. alatus wing extracts. The radical and hydrogen peroxide scavenging acitvities and reducing the power of 1,000 μg/mL E. alatus wing extracts, were similar to those of the positive control (0.1% BHT, 0.1% α-tocopherol). In addition, ethanol and methanol extract at 250 μg/mL showed 95.70 and 94.99% of α-glucosidase inhibition activity, respectively. The ethanol extract of E. alatus wings had the highest total polyphenol and flavonoid contents (867.8 mg% and 521.7 mg%, respectively). The E. alatus wing extracts significantly decreased the cell viability of LNCaP human prostate cancer cells (p<0.001), MDA-MB-231 human breast cancer cells (p<0.001), and HT-29 human colon cancer cells (p<0.001) in a dose-dependent manner. However, there was no significant effect on B16 mouse melanoma cells. Notably, the ethanol extracts showed higher cancer cell growth inhibitory activity in LNCaP and HT-29 cells than the other extracts. These results suggest that E. alatus wing extracts could have significant clinical applications, and our results can be used as basic data for future functional food material development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.