Artesunate, an anti-malarial drug, has been repurposed as an anticancer drug due to its induction of cell death via reactive oxygen species (ROS) production. However, the molecular mechanisms regulating cancer cell death and the resistance of cells to artesunate remain unclear. We investigated the molecular mechanisms behind the antitumor effects of artesunate and an approach to overcome artesunate resistance in head and neck cancer (HNC). The effects of artesunate and trigonelline were tested in different HNC cell lines, including three cisplatin-resistant HNC cell lines. The effects of these drugs as well as the inhibition of Keap1, Nrf2, and HO-1 were assessed by cell viability, cell death, glutathione (GSH) and ROS production, protein expression, and mouse tumor xenograft models. Artesunate selectively killed HNC cells but not normal cells. The artesunate sensitivity was relatively low in cisplatin-resistant HNC cells. Artesunate induced ferroptosis in HNC cells by decreasing cellular GSH levels and increasing lipid ROS levels. This effect was blocked by co-incubation with ferrostatin-1 and a trolox pretreatment. Artesunate activated the Nrf2–antioxidant response element (ARE) pathway in HNC cells, which contributed to ferroptosis resistance. The silencing of Keap1, a negative regulator of Nrf2, decreased artesunate sensitivity in HNC cells. Nrf2 genetic silencing or trigonelline reversed the ferroptosis resistance of Keap1-silenced and cisplatin-resistant HNC cells to artesunate in vitro and in vivo. Nrf2–ARE pathway activation contributes to the artesunate resistance of HNC cells, and inhibition of this pathway abolishes ferroptosis-resistant HNC.Condensed abstractOur results show the effectiveness and molecular mechanism of artesunate treatment on head and neck cancer (HNC). Artesunate selectively killed HNC cells but not normal cells by inducing an iron-dependent, ROS-accumulated ferroptosis. However, this effect may be suboptimal in some cisplatin-resistant HNCs because of Nrf2–antioxidant response element (ARE) pathway activation. Inhibition of the Nrf2–ARE pathway increased artesunate sensitivity and reversed the ferroptosis resistance in resistant HNC cells.
Methyl gallate is a major component of Galla Rhois, as carvacrol is of oregano essential oils. Both have shown good antibacterial activity against intestinal bacteria. This study investigated the antibacterial activities of nalidixic acid in combination with methyl gallate and carvacrol against nalidixic acid resistant bacteria. The combined effect of nalidixic acid with methyl gallate and carvacrol was evaluated using the checkerboard method to obtain a fractional inhibitory concentration index. The results showed that the combinations of nalidixic acid + methyl gallate/carvacrol improved nalidixic acid resistant pathogenic bacteria inhibition with synergy or partial synergy activity. Thus, a strong bactericidal effect of the drug combinations was observed. In vitro data thus suggested that nalidixic acid combined with methyl gallate and carvacrol may be microbiologically beneficial, rather than antagonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.