Electrical stimulation is commonly used for strengthening muscle but little evidence exists as to the optimal electrode size, waveform, or frequency to apply. Three male and three female subjects (22-40 years old) were examined during electrical stimulation of the quadriceps muscle. Two self adhesive electrode sizes were examined, 2 cm x 2 cm and 2 cm x 4 cm. Electrical stimulation was applied with square and sine waveforms, currents of 5, 10 and 15 mA, and pulse widths of 100-500 micros above the quadriceps muscle. Frequencies of stimulation were 20, 30, and 50 Hz. Current on the skin above the quadriceps muscle was measured with surface electrodes at five positions and at three positions with needle electrodes in the same muscle. Altering pulse width in the range of 100-500 micros, the frequency over a range of 20-50 Hz, or current from 5 to 15 mA had no effect on current dispersion either in the skin or within muscle. In contrast, the distance separating the electrodes caused large changes in current dispersion on the skin or into muscle. The most significant finding in the present investigation was that, while on the surface of the skin current dispersion was not different between sine and square wave stimulation, significantly more current was transferred deep in the muscle with sine versus square wave stimulation. The use of sine wave stimulation with electrode separation distances of less then 15 cm is recommended for electrical stimulation with a sine wave to achieve deep muscle stimulation.
Electrical stimulation is a widely used modality in the field of physical therapy and exercise physiology. The most common method for the application of electrical stimulation is a two-electrode system where one electrode is the source and the other is a reference. However, recent studies report that a more effective delivery system can be achieved if more than two electrodes are used. In the present investigation, the circuitry to deliver electrical stimulation through a 2-, 3- or 4-electrode delivery system was designed. The system was evaluated by its ability to deliver current on the surface of the skin as well as deep into the quadriceps muscle in six control subjects and in and around wounds in six other subjects. The results of the experiments showed that much better depth of penetration was achieved in a 4-electrode system (one electrode was on the opposite side of the limb and three electrodes were on top of the limb) than in either a 2- or a 3-electrode delivery system. In non-wounded skin, given the same current from the stimulator, the current in the quadriceps muscle was found to be double with a 4-electrode versus a 2-electrode system. In wounds, this same finding was seen. Here, blood flow, an indicator of the effectiveness of electrical stimulation in wounds, was three times higher if a multi-channel stimulator was used versus a 2-channel stimulator. Thus a multi-channel electrical stimulation system is more effective than a 2-electrode system.
When electrical stimulation is used on wounds, the electrical current has difficulty penetrating areas where there is necrotic tissue. Further, for an irregularly shaped wound, current distribution is poor in some areas of the wound since conventional two-electrode delivery systems provide the greatest current in a line directly between the electrodes. A new stimulator and electrode system is described which uses three electrodes spaced around a wound to disperse current more evenly. The stimulator senses tissue impedance and then redirects current by altering its Thevenin's output impedance for each electrode; each of the three electrodes becomes the active one in sequence while the remaining are the sink electrodes. Eight subjects were examined to test the stimulator. Electrical stimulation was applied to the skin above the quadriceps muscle at currents of 15 mA in six subjects without wounds and in two subjects with wounds. The relationship between electrode position and current dispersion on the skin was examined with a two-electrode vs. a three-electrode system to set stimulation parameters for the computer. The results showed that the three-electrode system could (1) detect areas of the skin with high impedance; (2) compensate by altering the Thevenin's output impedance at each of the three electrodes to shift current to high impedance areas; (3) provide uniform current across the skin as assessed by skin current and blood flow measurements with a laser Doppler flow imager.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.