This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N2-Ar and O2-Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N2-Ar and O2-Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N2-Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O2 -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O2-Ar discharges, the dissociation fraction of O2 molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.
Post-deposition annealing was investigated for hafnium silicate films deposited on Si substrates by atomic layer deposition. Annealing in NH3 at 750°C incorporated 13 At.% nitrogen in hafnium silicate, and hysteresis significantly depended on film thickness. In contrast, annealing in N2 at 950°C suppressed hysteresis and its dependence on the film thickness. In addition, effective mobility and positive bias temperature instability were improved by N2 annealing of as-deposited hafnium silicate films. Finally, additional N2 annealing following NH3 annealing was effective to obtain highly dense hafnium silicate films with good mobility and optimized nitrogen incorporation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.