Catalytic hydrogenation of lactic acid to propylene glycol was performed over various metals (Ag, Co, Cu, Ni, Pt, and Ru) supported on silica prepared by an incipient wetness impregnation method. The loading amount of each metal was 5 wt%. Crystallinity of the synthesized catalysts was investigated by X-ray diffraction (XRD), and the BET method was utilized to examine the surface area. Pore volume and pore size of catalysts were determined using BJH analysis of the N 2 adsorption isotherm. Particle sizes of various metals were determined from transmission electron microscopy (TEM) images. The catalytic activity was found to be strongly dependent on the supported metal. Among catalysts tested, Ru/SiO 2 showed the highest propylene glycol yield. The yield of propylene glycol increased with pressure, and the highest yield was achieved at 130°C.
In this work, rechargeable lithium-air battery using MnO2/MWNTs nanocomposites as a catalyst was studied. MnO2/MWNTs nanocomposites were synthesized by a hydrothermal method, and their physical and chemical properties were investigated. X-ray diffraction (XRD) was used to examine crystallinity and morphology was investigated by transmission electron microscopy (TEM). Charge-discharge behavior and cell impedance with electrolyte replacement were investigated, and charge-discharge capacity decreased with cycles mainly due to the decomposition of carbonate-based electrolyte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.