It is essential to estimate the state of charge (SOC) of lead-acid batteries to improve the stability and reliability of photovoltaic systems. In this paper, we propose SOC estimation methods for a lead-acid battery using a feed-forward neural network (FFNN) and a recurrent neural network (RNN) with a gradient descent (GD), a levenberg-marquardt (LM), and a scaled conjugate gradient (SCG). Additionally, an adaptive neuro-fuzzy inference system (ANFIS) with a hybrid method was proposed. The voltage and current are used as input data of neural networks to estimate the battery SOC. Experimental results show that the RNN with LM has the best performance for the mean squared error, but the ANFIS has the highest convergence speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.