Patients with weak or no symptoms accelerate the spread of COVID-19 through various mutations and require more aggressive and active means of validating the COVID-19 infection. More than 30% of patients are reported as asymptomatic infection after the delta mutation spread in Korea. It means that there is a need for a means to more actively and accurately validate the infection of the epidemic via pre-symptomatic detection, besides confirming the infection via the symptoms. Mishara et al. (Nat Biomed Eng 4, 1208–1220, 2020) reported that physiological data collected from smartwatches could be an indicator to suspect COVID-19 infection. It shows that it is possible to identify an abnormal state suspected of COVID-19 by applying an anomaly detection method for the smartwatch’s physiological data and identifying the subject’s abnormal state to be observed. This paper proposes to apply the One Class-Support Vector Machine (OC-SVM) for pre-symptomatic COVID-19 detection. We show that OC-SVM can provide better performance than the Mahalanobis distance-based method used by Mishara et al. (Nat Biomed Eng 4, 1208–1220, 2020) in three aspects: earlier (23.5–40% earlier) and more detection (13.2–19.1% relative better) and fewer false positives. As a result, we could conclude that OC-SVM using Resting Heart Rate (RHR) with 350 and 300 moving average size is the most recommended technique for COVID-19 pre-symptomatic detection based on physiological data from the smartwatch.
Patients with weak or no symptoms accelerate the spread of COVID-19 through various mutations and require more aggressive and active means of validating the COVID-19 infection. More than 30% of patients are reported as asymptomatic infection after the delta mutation spread in Korea. It means that there is a need for a means to more actively and accurately validate the infection of the epidemic via pre-symptomatic detection, besides confirming the infection via the symptoms. Mishara et al.[1] reported that physiological data collected from smartwatches could be an indicator to suspect COVID-19 infection. It shows that it is possible to identify an abnormal state suspected of COVID-19 by applying an anomaly detection method for the smartwatch’s physiological data and identifying the subject’s abnormal state to be observed. This paper proposes to apply the One Class-Support Vector Machine (OC-SVM) for pre-symptomatic COVID-19 detection. We show that OC-SVM can provide better performance than the Mahalanobis distance-based method used by Mishara et al.[1] in three aspects: earlier (23.5%-40% earlier) and more detection (13.2%-19.1% relative better) and fewer false positives. As a result, we could conclude that OC-SVM using RHR (Resting Heart Rate) with 350 and 300 moving average size is the most recommended technique for COVID-19 pre-symptomatic detection based on physiological data from the smartwatch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.