Functionalized porphyrins at meso-and β-positions with different carboxylic acid groups were prepared to investigate electronic and photovoltaic properties as dye-sensitized nanocrystalline-TiO 2 solar cells. The electronic structures of the porphyrin macrocyclic core are strongly coupled with olefinic side chains so that the absorption spectrum exhibits largely broad and red-shifted Soret and Q-bands, especially up to 475 nm at the Soret band in a porphyrin doubly functionalized with malonic diacid groups. Among porphyrin derivatives prepared in this study, 2b-bdta-Zn exhibits the maximum overall conversion efficiency of 3.03% and the maximum incident photon to current efficiency of 60.1% in the Soret band region, superior to the others. From such photovoltaic performances, we can suggest that multiple pathways through olefinic side chains at two β-positions enhance the overall electron injection efficiency and the moderate distance between the porphyrin sensitizer and the TiO 2 semiconductor layer is important, retarding the charge recombination processes. As a consequence, these combined effects give rise to higher photovoltaic efficiency in photovoltaic regenerative solar cells.
Novel meso−meso directly linked porphyrin dimers tethered at β-pyrrolic positions of the porphyrin ring with 2-propenoic acids or 2,4-pentadienoic acids were prepared for sensitization of nanocrystalline titanium dioxide solar cells. Most importantly, the absorption spectra of dimeric porphyrins were notably extended into the midvisible region in the solar spectrum while the LUMO levels are sufficiently high to inject electrons to the conduction band of TiO2. Among these dimers, PEG-2b-bd-Zn2 dimer, bearing a poly(ethylene glycol) end group at one meso position, showed the highest incident photon-to-photocurrent generation with 47% efficiency at the Soret region as well as the power conversion efficiency of 4.2% under standard AM 1.5 solar condition. To elucidate electronic structures and excited-state properties, UV−vis absorption and emission, cyclic voltammetry measurements, and density functional theory calculations were performed. To our best knowledge, the obtained conversion efficiency of 4.2% from PEG-2b-bd-Zn2-sensitized DSSC is the highest photovoltaic performance among DSSCs based on oligomeric porphyrins. Thus, this work suggests that the wide spectral response of directly linked porphyrin dimers due to the excitonic coupling is an intriguing aspect of directly linked pophyrin dimers to be utilized for DSSCs and gives an insight into the design of more efficient light-harvesting molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.