The c-jun N-terminal kinase (JNK) signaling pathway is regulated by JNK-interacting protein-1 (JIP1), which is a scaffolding protein assembling the components of the JNK cascade. Overexpression of JIP1 deactivates the JNK pathway selectively by cytoplasmic retention of JNK and thereby inhibits gene expression mediated by JNK, which occurs in the nucleus. Here, we report the crystal structure of human JNK1 complexed with pepJIP1, the peptide fragment of JIP1, revealing its selectivity for JNK1 over other MAPKs and the allosteric inhibition mechanism. The van der Waals contacts by the three residues (Pro157, Leu160, and Leu162) of pepJIP1 and the hydrogen bonding between Glu329 of JNK1 and Arg156 of pepJIP1 are critical for the selective binding. Binding of the peptide also induces a hinge motion between the Nand C-terminal domains of JNK1 and distorts the ATPbinding cleft, reducing the affinity of the kinase for ATP. In addition, we also determined the ternary complex structure of pepJIP1-bound JNK1 complexed with SP600125, an ATP-competitive inhibitor of JNK, providing the basis for the JNK specificity of the compound.
The vascular network of the brain is formed by the invasion of vascular sprouts from the pia mater toward the ventricles. Following angiogenesis of the primary vascular network, brain vessels experience a maturation process known as barriergenesis, in which the blood–brain barrier is formed. In this minireview, we discuss the processes of brain angiogenesis and barriergenesis, as well as the molecular and cellular mechanisms underlying brain vessel formation. At the molecular level, angiogenesis and barriergenesis occur via the coordinated action of oxygen‐responsive molecules (e.g. hypoxia‐inducible factor and Src‐suppressed C kinase substrate/AKAP12) and soluble factors (e.g. vascular endothelial growth factor and angiopoietin‐1), as well as axon guidance molecules and neurotrophic factors. At the cellular level, we focus on neurovascular cells, such as pericytes, astrocytes, vascular smooth muscle cells, neurons and brain macrophages. Each cell type plays a unique role, and works with other types to maintain environmental homeostasis and to respond to certain stimuli. Taken together, this minireview emphasizes the importance of the coordinated action of molecules and cells at the neurovascular interface, with regards to the regulation of angiogenesis and barriergenesis.
Heat shock protein (Hsp)70 is a molecular chaperone that maintains protein homoeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. However, the mechanisms by which Hsp70 balances these opposing functions under stress conditions remain unknown. Here, we demonstrate that Hsp70 preferentially facilitates protein refolding after stress, gradually switching to protein degradation via a mechanism dependent on ARD1-mediated Hsp70 acetylation. During the early stress response, Hsp70 is immediately acetylated by ARD1 at K77, and the acetylated Hsp70 binds to the co-chaperone Hop to allow protein refolding. Thereafter, Hsp70 is deacetylated and binds to the ubiquitin ligase protein CHIP to complete protein degradation during later stages. This switch is required for the maintenance of protein homoeostasis and ultimately rescues cells from stress-induced cell death in vitro and in vivo. Therefore, ARD1-mediated Hsp70 acetylation is a regulatory mechanism that temporally balances protein refolding/degradation in response to stress.
Angiogenesis in the developing central nervous system (CNS) is regulated by neuroepithelial cells, although the genes and pathways that couple these cells to blood vessels remain largely uncharacterized. Here, we have used biochemical, cell biological and molecular genetic approaches to demonstrate that β8 integrin (Itgb8) and neuropilin 1 (Nrp1) cooperatively promote CNS angiogenesis by mediating adhesion and signaling events between neuroepithelial cells and vascular endothelial cells. β8 integrin in the neuroepithelium promotes the activation of extracellular matrix (ECM)-bound latent transforming growth factor β (TGFβ) ligands and stimulates TGFβ receptor signaling in endothelial cells. Nrp1 in endothelial cells suppresses TGFβ activation and signaling by forming intercellular protein complexes with β8 integrin. Cell type-specific ablation of β8 integrin, Nrp1, or canonical TGFβ receptors results in pathological angiogenesis caused by defective neuroepithelial cell-endothelial cell adhesion and imbalances in canonical TGFβ signaling. Collectively, these data identify a paracrine signaling pathway that links the neuroepithelium to blood vessels and precisely balances TGFβ signaling during cerebral angiogenesis.
Experiments with human cancer glioblastoma multiforme cell lines, primary patient samples, and preclinical mouse models are performed to show that αvβ8 integrin and RhoGDI1 are components of a signaling axis that drives brain tumor cell invasion via regulation of Rho GTPase activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.