The annotation of three-dimensional (3D) cephalometric landmarks in 3D computerized tomography (CT) has become an essential part of cephalometric analysis, which is used for diagnosis, surgical planning, and treatment evaluation. The automation of 3D landmarking with high-precision remains challenging due to the limited availability of training data and the high computational burden. This paper addresses these challenges by proposing a hierarchical deep-learning method consisting of four stages: 1) a basic landmark annotator for 3D skull pose normalization, 2) a deep-learning-based coarse-to-fine landmark annotator on the midsagittal plane, 3) a low-dimensional representation of the total number of landmarks using variational autoencoder (VAE), and 4) a local-to-global landmark annotator. The implementation of the VAE allows two-dimensional-image-based 3D morphological feature learning and similarity/dissimilarity representation learning of the concatenated vectors of cephalometric landmarks. The proposed method achieves an average 3D point-to-point error of 3.63 mm for 93 cephalometric landmarks using a small number of training CT datasets. Notably, the VAE captures variations of craniofacial structural characteristics.
\textbf{Objective} Recently, dental cone-beam computed tomography (CBCT) methods have been improved to significantly reduce radiation dose while maintaining image resolution with minimal equipment cost. In low-dose CBCT environments, metallic inserts such as implants, crowns, and dental fillings cause severe artifacts, which result in a significant loss of morphological structures of teeth in reconstructed images. Such metal artifacts prevent accurate 3D bone-teeth-jaw modeling for diagnosis and treatment planning. However, the performance of existing metal artifact reduction (MAR) methods in handling the loss of the morphological structures of teeth in reconstructed CT images remains relatively limited. In this study, we developed an innovative MAR method to achieve optimal restoration of anatomical details. \textbf{Approach} The proposed MAR approach is based on a two-stage deep learning-based method. In the first stage, we employ a deep learning network that utilizes intra-oral scan data as side-inputs and performs multi-task learning of auxiliary tooth segmentation. The network is designed to improve the learning ability of capturing teeth-related features effectively while mitigating metal artifacts. In the second stage, a 3D bone-teeth-jaw model is constructed with weighted thresholding, where the weighting region is determined depending on the geometry of the intra-oral scan data. \textbf{Main results} The results of numerical simulations and clinical experiments are presented to demonstrate the feasibility of the proposed approach. \textbf{Significance} We propose for the first time a MAR method using radiation-free intra-oral scan data as supplemental information on the tooth morphological structures of teeth, which is designed to perform accurate 3D bone-teeth-jaw modeling in low-dose CBCT environments.
Identification of 3D cephalometric landmarks that serve as proxy to the shape of human skull is the fundamental step in cephalometric analysis. Since manual landmarking from 3D computed tomography (CT) images is a cumbersome task even for the trained experts, automatic 3D landmark detection system is in a great need. Recently, automatic landmarking of 2D cephalograms using deep learning (DL) has achieved great success, but 3D landmarking for more than 80 landmarks has not yet reached a satisfactory level, because of the factors hindering machine learning such as the high dimensionality of the input data and limited amount of training data due to the ethical restrictions on the use of medical data. This paper presents a semi-supervised DL method for 3D landmarking that takes advantage of anonymized landmark dataset with paired CT data being removed. The proposed method first detects a small number of easy-to-find reference landmarks, then uses them to provide a rough estimation of the all landmarks by utilizing the low dimensional representation learned by variational autoencoder (VAE). The anonymized landmark dataset is used for training the VAE. Finally, coarse-to-fine detection is applied to the small bounding box provided by rough estimation, using separate strategies suitable for the mandible and the cranium. For mandibular landmarks, patch-based 3D CNN is applied to the segmented image of the mandible (separated from the maxilla), in order to capture 3D morphological features of mandible associated with the landmarks. We detect 6 landmarks around the condyle all at once rather than one by one, because they are closely related to each other. For cranial landmarks, we again use the VAE-based latent representation for more accurate annotation. In our experiment, the proposed method achieved a mean detection error of 2.88 mm for 90 landmarks using only 15 paired training data.
In this paper, an automated and visually explainable system is proposed for a scoliosis assessment from spinal radiographs, which deals with the drawback of manual measurements, which are known to be time-consuming, cumbersome, and operator dependent. Deep learning techniques have been successfully applied in the accurate extraction of Cobb angle measurements, which is the gold standard for a scoliosis assessment. Such deep learning methods directly estimate the Cobb angle without providing structural information of the spine which can be used for diagnosis. Although conventional segmentation-based methods can provide the spine structure, they still have limitations in the accurate measurement of the Cobb angle. It would be desirable to build a clinician-friendly diagnostic system for scoliosis that provides not only an automated Cobb angle assessment but also local and global structural information of the spine. This paper addresses this need through the development of a hierarchical method which consisting of three major parts. (1) A confidence map is used to selectively localize and identify all vertebrae in an accurate and robust manner, (2) vertebral-tilt field is used to estimate the slope of an individual vertebra, and (3) the Cobb angle is determined by combining the vertebral centroids with the previously obtained vertebral-tilt field. The performance of the proposed method was validated, resulting in circular mean absolute error of 3.51 • and symmetric mean absolute percentage error of 7.84% for the Cobb angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.