The microstructural characteristics of a simulated heat-affected zone (HAZ) in SA213-T23 (2.25Cr-1.6W steel) used for boiler tubes employed in thermal power plants were investigated using nital, alkaline sodium picrate, and Murakami's etchants. In order to investigate the microstructure formation process of the HAZ in the welding process, simulated HAZ specimens were fabricated at intervals of 100 • C for peak temperatures between 950 and 1350 • C, and the microstructural features and precipitate behavior at various peak temperatures were observed. The alkaline-sodium-picrate-etched microstructures exhibited a black dot or band, which was not observed in the natal-etched microstructure. As the temperature increased from 950 to 1350 • C, the black dot and band became wider and thicker. Experimental analyses using an electron probe micro-analyzer, electron backscatter diffraction, and transmission electron microscopy revealed the appearance of austenite in the black dot region at a peak temperature of 950 • C; its amount increased up to a peak temperature of 1050 • C and thereafter decreased as the peak temperature further increased. The amount of M23C6 decreased with an increase in peak temperature. Based on these results, we investigated the behaviors of austenite and M23C6 as functions of the peak temperature.
Abstract:In the 21st century, there is an increasing need for high-capacity, high-efficiency, and environmentally friendly power generation systems. The environmentally friendly integrated gasification combined-cycle (IGCC) technology has received particular attention. IGCC pressure vessels require a high-temperature strength and creep strength exceeding those of existing pressure vessels because the operating temperature of the reactor is increased for improved capacity and efficiency. Therefore, high-pressure vessels with thicker walls than those in existing pressure vessels (≤200 mm) must be designed. The primary focus of this research is the development of an IGCC pressure vessel with a fully bainitic structure in the middle portion of the 300 mm thick Cr-Mo steel walls. For this purpose, the effects of the alloy content and cooling rates on the ferrite precipitation and phase transformation behaviors were investigated using JMatPro modeling and thermodynamic calculation; the results were then optimized. Candidate alloys from the simulated results were tested experimentally.
The importance of the additional growth and/or transformation of the austenite phase that occurs in weld metals of super duplex stainless steel upon reheating is known. However, the effects have not been fully investigated, especially with respect to reheating induced by weaving during single-pass welding. In this work, bead-on-pipe gas tungsten arc welding (GTAW) was conducted on super duplex stainless steel to understand the effect of weaving on the microstructure of weld metal. Microstructural analysis, electron backscatter diffraction (EBSD), and focused ion beam transmission electron microscopy (FIB-TEM) were carried out to investigate the relationship between weaving and microstructural change. The weaving of GTAW produced a dynamic reheated area just before the weld bead during welding. It was revealed that extensive reheated weld existed even after one welding pass, and that the content of the austenite phase in the reheated area was higher than that in the non-reheated area, indicating the existence of a large quantity of intragranular austenite phase. In addition, the Cr 2 N content in the reheated area was lower than that in the non-reheated area. This reduction of Cr 2 N was closely related to the reheating resulting from weaving. TEM analysis revealed that Cr 2 N in the non-reheated area was dispersed following heating and transformed to secondary austenite.
2.25Cr-1Mo steel with high strength at high temperatures and superior hydrogen resistance is widely used as power generation boiler material in high-temperature and high-pressure environments. Following the test evaluation of the ASME Boiler and Pressure Vessel Code, specimens from the base metal of a boiler pipe were found to have impact toughness values of 386 and 28J, which are drastically different values. The analysis of the fracture surface of the 28J test specimen revealed MnS inclusions and it was found that cracks were initiated at the inclusions. Observation of the cross-section of the crack propagation front revealed that cracks propagated along the ferrite regions and precipitate voids. Inclusions were also found in the 386J impact specimen. However, the volume fraction of the inclusions was significantly less than that of the 28J specimen. It was also found that the ferrite and carbide content of the 386J specimen was less than the 28J specimen. The reason that the inclusions, ferrite, and carbide content differed in the two adjacent impact test specimens was analyzed. The effects of micro-segregation such as MnS inclusions on ferrite and carbide were compared and analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.