-This paper presents a torque ripple reduction method of direct torque control (DTC) using fuzzy controller with optimal selection strategy of voltage vectors in a five-phase induction motor. The conventional DTC method has some drawbacks. First, switching frequency changes according to the hysteresis bands and motor's speed. Second, the torque ripple is rapidly increased in long control period. In order to solve these problems, some/most papers have proposed torque ripple reduction methods by using the optimal duty ratio of the non-zero voltage vector. However, these methods are complicated in accordance with the parameter. If this drawback is eliminated, the torque ripple can be reduced compared with conventional method. In addition, the DTC can be simply controlled without the use of the parameter. Therefore, the proposed algorithm is changing the voltage vector insertion time by using the designed fuzzy controller. Also, the optimized voltage vector selection method is used in accordance with the torque error. Simulation and experimental results show effectiveness of the proposed control algorithm.
This paper presents a fault diagnosis method for switched reluctance machine (SRM) drive systems using a switching signal. This method can detect to the power transistor of power converter which has an open and short circuit. In addition, the information of the short fault switch can be recognized by using signals of the real switch and digital signal processor (DSP). The signals of DSP have some fault patterns, which are analyzed in the power converter, under the fault occurrence situation. The validity of the proposed method is verified by the simulation and experiment using the SRM drive system.
-This paper proposes a sensorless control method to improve the performance of an internal permanent magnet synchronous motor (IPMSM) control by using a full-order flux observer in a wide speed range. The conventional sensorless control method uses a constant gain for high performance at low-speed region. However, this method has drawbacks such as an increased angle error and current ripple in the high-speed region due to the fixed gain value. In order to overcome this problem, the gain of the full-order flux observer is changed by considering the angle error in the whole speed range. The proposed method minimizes the angle error for each region of the speed range by applying a relevant gain value, which improves the current ripple reduction and motor noise cancellation. The validity of proposed sensorless control method is verified by a simulation and an experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.