Rationale:
Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease characterized by autoantibody production by hyper-activated B cells. Although mesenchymal stem cells (MSCs) ameliorate lupus symptoms by inhibiting T cells, whether they inhibit B cells has been controversial. Here we address this issue and reveal how to prime MSCs to inhibit B cells and improve the efficacy of MSCs in SLE.
Methods:
We examined the effect of MSCs on purified B cells
in vitro
and the therapeutic efficacy of MSCs in lupus-prone MRL.
Fas
lpr
mice. We screened chemicals for their ability to activate MSCs to inhibit B cells.
Results:
Mouse bone marrow-derived MSCs inhibited mouse B cells in a CXCL12-dependent manner, whereas human bone marrow-derived MSCs (hMSCs) did not inhibit human B (hB) cells. We used a chemical approach to overcome this hurdle and found that phorbol myristate acetate (PMA), phorbol 12,13-dibutyrate, and ingenol-3-angelate rendered hMSCs capable of inhibiting IgM production by hB cells. As to the mechanism, PMA-primed hMSCs attracted hB cells in a CXCL10-dependent manner and induced hB cell apoptosis in a PD-L1-dependent manner. Finally, we showed that PMA-primed hMSCs were better than naïve hMSCs at ameliorating SLE progression in MRL.
Fas
lpr
mice.
Conclusion:
Taken together, our data demonstrate that phorbol esters might be good tool compounds to activate MSCs to inhibit B cells and suggest that our chemical approach might allow for improvements in the therapeutic efficacy of hMSCs in SLE.
In our continuing search for novel small-molecule anticancer agents, we designed and synthesized a series of novel (E)-N'-(3-allyl-2-hydroxy)benzylidene-2-(4oxoquinazolin-3(4H)-yl)acetohydrazides ( 5), focusing on the modification of substitution in the quinazolin-4(3H)-one moiety. The biological evaluation showed that all 13 designed and synthesized compounds displayed significant cytotoxicity against three human cancer cell lines (SW620, colon cancer; PC-3, prostate cancer; NCI-H23, lung cancer). The most potent compound 5l displayed cytotoxicity up to 213fold more potent than 5-fluorouracil and 87-fold more potent than PAC-1, the first procaspase-activating compound. Structure-activity relationship analysis revealed that substitution of either electron-withdrawing or electron-releasing groups at positions 6 or 7 on the quinazolin-4(3H)-4-one moiety increased the cytotoxicity of the compounds, but substitution at position 6 seemed to be more favorable. In the caspase activation assay, compound 5l was found to activate the caspase activity by 291% in comparison to PAC-1, which was used as a control. Further docking simulation also revealed that this compound may be a potent allosteric inhibitor of procaspase-3 through chelation of the inhibitory zinc ion. Physicochemical and ADMET calculations for 5l provided useful information of its suitable absorption profile and some toxicological effects that need further optimization to be developed as a promising anticancer agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.