Abstract:Mt. Baekdu is a volcano near the North Korea-Chinese border that experienced a few destructive eruptions over the course of its history, including the well-known 1702 A.D eruption. However, signals of unrest, including seismic activity, gas emission and intense geothermal activity, have been occurring with increasing frequency over the last few years. Due to its close vicinity to a densely populated area and the high magnitude of historical volcanic eruptions, its potential for destructive volcanic activity has drawn wide public attention. However, direct field surveying in the area is limited due to logistic challenges. In order to compensate for the limited coverage of ground observations, comprehensive measurements using remote sensing techniques are required. Among these techniques, Differential Interferometric SAR (DInSAR) analysis is the most effective method for monitoring surface deformation and is employed in this study. Through advanced atmospheric error correction and time series analysis, the accuracy of the detected displacements was improved. As a result, clear uplift up to 20 mm/year was identified around Mt. Baekdu and was further used to estimate the possible deformation source, which is considered as a consequence of magma and fault interaction. Since the method for tracing deformation was proved feasible, continuous DInSAR monitoring employing upcoming SAR missions and advanced error regulation algorithms will be of great value in monitoring comprehensive surface deformation over Mt. Baekdu and in general world-wide active volcanoes.
As demonstrated in prior studies, InSAR holds great potential for land cover classification, especially considering its wide coverage and transparency to climatic conditions. In addition to features such as backscattering coefficient and phase coherence, the temporal migration in InSAR signatures provides information that is capable of discriminating types of land cover in target area. The exploitation of InSAR signatures was expected to provide merits to trace land cover change in extensive areas; however, the extraction of suitable features from InSAR signatures was a challenging task. Combining time series amplitudes and phase coherences through linear and nonlinear compressions, we showed that the InSAR signatures could be extracted and transformed into reliable classification features for interpreting land cover types. The prototype was tested in mountainous areas that were covered with a dense vegetation canopy. It was demonstrated that InSAR time series signature analyses reliably identified land cover types and also recognized tracing of temporal land cover change. Based on the robustness of the developed scheme against the temporal noise components and the availability of advanced spatial and temporal resolution SAR data, classification of finer land cover types and identification of stable scatterers for InSAR time series techniques can be expected. The advanced spatial and temporal resolution of future SAR assets combining the scheme in this study can be applicable for various important applications including global land cover changes monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.