The EMBRYONIC FLOWER (EMF) 1 gene has been shown to be necessary for maintenance of vegetative development. To investigate the molecular mechanism of EMF1-mediated plant development, we screened EMF1-interacting proteins and identified 11 candidate proteins using the yeast two-hybrid system. Among the candidate genes, three EMF1-Interacting Protein (EIP) genes, EIP1, EIP6 and EIP9, are predicted to encode a WNK (with-no-lysine) kinase, a B-box zinc-finger protein and a DnaJ-domain protein, respectively. The expression patterns of EIP1, EIP6 and EIP9 were similar to that of EMF1, and EMF1-EIP1, EMF1-EIP6 and EMF1-EIP9 heterodimers were localized in the nucleus. In addition, eip1, eip6 and eip9 mutants flowered early and showed increased expression of flowering-time and floral organ identity genes, while EIP1-, EIP6- and EIP9-overexpressing transgenic plants showed late flowering phenotypes. Our results suggest that EMF1 interacts with EIP1, EIP6 and EIP9 during vegetative development to regulate flowering time in Arabidopsis.
Plants have developed various regulatory pathways to adapt to environmental stresses. In this study, we identified Arabidopsis MKKK20 as a regulator in the response to osmotic stress. mkkk20 mutants were found to be sensitive to high concentration of salt and showed higher water loss rates than wild-type (WT) plants under dehydration conditions. In addition, mkkk20 mutants showed higher accumulation of superoxide, a reactive oxygen species (ROS), compared to WT plants under high salt condition. In contrast, transgenic plants overexpressing MKKK20 displayed tolerance to salt stress. MKKK20 transcripts were increased by the treatments with NaCl, mannitol, MV, sorbitol, and cold, suggesting that MKKK20 is involved in the response to osmotic, ROS, and cold stresses. In-gel kinase assay showed that MKKK20 regulates the activity of MPK6 under NaCl, cold, and H(2)O(2) treatments. Taken together, our results suggest that MKKK20 might be involved in the response to various abiotic stresses, especially osmotic stress, through its regulation of MPK6 activity.
Despite increasing reports that CCCH zinc finger proteins function in plant development and stress responses, the functions and molecular aspects of many CCCH zinc finger proteins remain uncharacterized. Here, we characterized the biological and molecular functions of AtC3H17, a unique Arabidopsis gene encoding a non-tandem CCCH zinc finger protein. AtC3H17 was ubiquitously expressed throughout the life cycle of Arabidopsis plants and their organs. The rate and ratio of seed germination of atc3h17 mutants were slightly slower and lower, respectively, than those of the wild type (WT), whereas AtC3H17-overexpressing transgenic plants (OXs) showed an enhanced germination rate. atc3h17 mutant seedlings were smaller and lighter than WT seedlings while AtC3H17 OX seedlings were larger and heavier. In regulation of flowering time, atc3h17 mutants showed delayed flowering, whereas AtC3H17 OXs showed early flowering compared with the WT. In addition, overexpression of AtC3H17 affected seed development, displaying abnormalities compared with the WT. AtC3H17 protein was localized to the nucleus and showed transcriptional activation activity in yeast and Arabidopsis protoplasts. The N-terminal region of AtC3H17, containing a conserved EELR-like motif, was necessary for transcriptional activation activity, and the two conserved glutamate residues in the EELR-like motif played an important role in transcriptional activation activity. Real-time PCR and transactivation analyses showed that AtC3H17 might be involved in seed development via transcriptional activation of OLEO1, OLEO2 and CRU3. Our results suggest that AtC3H17 has pleiotropic effects on vegetative development such as seed germination and seedling growth, flowering and seed development, and functions as a nuclear transcriptional activator in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.