Fatty Acid Desaturase-1 (FADS1) or delta 5 desaturase (D5D) is a rate-limiting enzyme involved in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), i.e., arachidonic acid (ARA) and eicosapentaenoic (EPA). These LC-PUFAs and their metabolites play essential and broad roles in cancer cell proliferation, metastasis, and tumor microenvironment. However, the role of FADS1 in cancers remains incompletely understood. Utilizing The Cancer Genome Atlas (TCGA) database, we explored the role of FADS1 across different cancer types using multiple bioinformatics and statistical tools. Moreover, we studied the impact of a FADS1 inhibitor (D5D-IN-326) on proliferation of multiple cancer cell lines. We identified that FADS1 gene is a predictor for cancer survival in multiple cancer types. Compared to normal tissue, the mRNA expression of FADS1 is significantly increased in primary tumors while even higher in metastatic and recurrent tumors. Mechanistically, pathway analysis demonstrated that FADS1 is associated with cholesterol biosynthesis and cell cycle control genes. Interestingly, FADS1 expression is higher when TP53 is mutated. Tumors with increased FADS1 expression also demonstrated an increased signatures of fibroblasts and macrophages infiltration among most cancer types. Our in vitro assays showed that D5D-IN-326 significantly inhibited cell proliferation of kidney, colon, breast, and lung cancer cell lines in a dose-dependent manner. Lastly, single nucleotide polymorphisms (SNPs) which are well-established expression quantitative trait loci (eQTLs) for FADS1 in normal human tissues are also significantly correlated with FADS1 expression in tumors of multiple tissue types, potentially serving as a marker to stratify cancer patients with high/low FADS1 expression in their tumor tissue. Our study suggests that FADS1 plays multiple roles in cancer biology and is potentially a novel target for precision cancer treatment.
Pathogenesis roles of phospholipids (PLs) in nonalcoholic fatty liver disease (NAFLD) remain incompletely understood. This study investigated the role of PLs in the progression of NAFLD among obese individuals via studying the alterations in serum PL composition throughout the spectrum of disease progression and evaluating the effects of specific phosphatidylethanolamines (PEs) on FLD development in vitro. A total of 203 obese subjects, who were undergoing bariatric surgery, were included in this study. They were histologically classified into 80 controls (C) with normal liver histology, 93 patients with simple hepatic steatosis (SS), 16 with borderline nonalcoholic steatohepatitis (B-NASH) and 14 with progressive NASH (NASH). Serum PLs were profiled by automated electrospray ionization tandem mass spectrometry (ESI-MS/MS). HepG2 (hepatoma cells) and LX2 (immortalized hepatic stellate cells or HSCs) were used to explore the roles of PL in NAFLD/NASH development. Several PLs and their relative ratios were significantly associated with NAFLD progression, especially those involving PE. Incubation of HepG2 cells with two phosphatidylethanolamines (PEs), PE (34:1) and PE (36:2), resulted in significant inhibition of cell proliferation, reduction of mitochondrial mass and membrane potential, induction of lipid accumulation and mitochondrial ROS production. Meanwhile, treatment of LX2 cells with both PEs markedly increased cell activation and migration. These effects were associated with a significant change in the expression levels of genes involved in lipogenesis, lipid oxidation, autophagy, apoptosis, inflammation, and fibrosis. Thus, our study demonstrated that elevated level of PEs increases susceptibility to the disease progression of obesity associated NAFLD, likely through a causal cascade of impacts on the function of different liver cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.