Aging-related muscle atrophy is associated with decreased muscle mass (MM), muscle strength (MS), and muscle function (MF) and may cause motor control, balance, and gait pattern impairments. This study determined associations of three speed-based gait variables with loss of MM, MS, and MF in older women. Overall, 432 older women aged ≥65 performed appendicular skeletal muscle, handgrip strength, and five times sit-to-stand test to evaluate MM, MS, and MF. A gait test was performed at three speeds by modifying the preferred walking speed (PWS; slower walking speed (SWS); faster-walking speed (FWS)) on a straight 19 m walkway. Stride length (SL) at PWS was significantly associated with MM. FWS and coefficient of variance (CV) of double support phase (DSP) and DSP at PWS showed significant associations with MS. CV of step time and stride time at SWS, FWS, and single support phase (SSP) at PWS showed significant associations with MF. SL at PWS, DSP at FWS, CV of DSP at PWS, stride time at SWS, and CV of SSP at PWS showed significant associations with composite MM, MS, and MF variables. Our study indicated that gait tasks under continuous and various speed conditions are useful for evaluating MM, MS, and MF.
Gait and physical fitness are related to cognitive function. A decrease in motor function and physical fitness can serve as an indicator of declining global cognitive function in older adults. This study aims to use machine learning (ML) to identify important features of gait and physical fitness to predict a decline in global cognitive function in older adults. A total of three hundred and six participants aged seventy-five years or older were included in the study, and their gait performance at various speeds and physical fitness were evaluated. Eight ML models were applied to data ranked by the p-value (LP) of linear regression and the importance gain (XI) of XGboost. Five optimal features were selected using elastic net on the LP data for men, and twenty optimal features were selected using support vector machine on the XI data for women. Thus, the important features for predicting a potential decline in global cognitive function in older adults were successfully identified herein. The proposed ML approach could inspire future studies on the early detection and prevention of cognitive function decline in older adults.
The elderly population in South Korea accounted for 15.5% of the total population in 2019. Thus, it is important to study the various elements governing the process of healthy aging. Therefore, this study investigated multiple prediction models to determine the health-related quality of life (HRQoL) in elderly adults based on the demographics, questionnaires, gait ability, and physical fitness. We performed eight physical fitness tests on 775 participants wearing shoe-type inertial measurement units and completing walking tasks at slower, preferred, and faster speeds. The HRQoL for physical and mental components was evaluated using a 36-item, short-form health survey. The prediction models based on multiple linear regression with feature importance were analyzed considering the best physical and mental components. We used 11 variables and 5 variables to form the best subset of features underlying the physical and mental components, respectively. We laid particular emphasis on evaluating the functional endurance, muscle strength, stress level, and falling risk. Furthermore, stress, insomnia severity, number of diseases, lower body strength, and fear of falling were taken into consideration in addition to mental-health-related variables. Thus, the study findings provide reliable and objective results to improve the understanding of HRQoL in elderly adults.
For people with Parkinson’s disease (PD) with freezing of gait (FOG) (freezers), symptoms mainly exhibit as unilateral motor impairments that may cause difficulty during postural transitions such as turning during daily activities. We investigated the turning characteristics that distinguished freezers among people with PD and analyzed the association between the New Freezing of Gait Questionnaire (NFOGQ) scores and the gait characteristics according to the turning direction for the affected limbs of freezers. The study recruited 57 people with PD (27 freezers, 30 non-freezers). All experiments measured the maximum 180° turning task with the “Off” medication state. Results revealed that the outer ankle range of motion in the direction of the inner step of the more affected limb (IMA) was identified to distinguish freezers and non-freezers (RN2 = 0.735). In addition, higher NFOGQ scores were associated with a more significant anteroposterior root mean square distance of the center of mass in the IMA direction and a greater inner stance phase in the outer step of the more affected limb (OMA) direction; explanatory power was 50.1%. Assessing the maximum speed and turning direction is useful for evaluating the differences in turning characteristics between freezers and non-freezers, which can help define freezers more accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.