Soybean processing, e.g., by soaking, heating, and fermentation, typically results in diverse metabolic changes. Herein, multivariate analysis-based metabolic profiling was employed to investigate the effects of fermentation by Aspergillus oryzae or Bacillus subtilis on soybean substrates extracted at 4, 25, or 55 °C. As metabolic changes for both A. oryzae and B. subtilis were most pronounced for substrates extracted at 55 °C, this temperature was selected to compare the two microbial fermentation strategies, which were shown to be markedly different. Specifically, fermentation by A. oryzae increased the levels of most organic acids, γ-aminobutyric acid, and glutamine, which were ascribed to carbohydrate metabolism and conversion of glutamic acid into GABA and glutamine. In contrast, fermentation by B. subtilis increased the levels of most amino acids and isoflavones, which indicated the high activity of proteases and β-glucosidase. Overall, the obtained results were concluded to be useful for the optimization of processing steps in terms of nutritional preferences.
Soaking of soybean seeds is a prerequisite for the production of soy foods, and it has been shown that the extent of water absorbed during different imbibition conditions directly affects the quality of the subsequent soybean seed products by yet unknown mechanisms. In order to elucidate the molecular changes in soybean seeds during different soaking temperatures, we performed an integrated proteomics and metabolomics analysis of seeds soaked at 4, 25, and 55 °C. Proteomics analysis revealed that various enzymes related to carbohydrate and protein hydrolysis were activated in soybean seeds during water soaking at 55 °C. Interestingly, results obtained from this integrated proteomics and metabolomics study showed changes in various metabolites, including isoflavones, amino acids, and sugars, that were positively correlated with proteome changes occurring upon soaking at 55 °C. Furthermore, soaking of soybean seeds at 55 °C resulted in degradation of indigestible anti-nutrients such as raffinose oligosaccharides. Taken together, our results suggest that the seed soaking at a high temperature (55 °C) increases the nutritional value of soybean seeds by decreasing the contents of some of the common anti-nutrients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.