Scholarly information has increased tremendously according to the development of IT, especially the Internet. However, simultaneously, people have to spend more time and exert more effort because of information overload. There have been many research efforts in the field of expert systems, data mining, and information retrieval, concerning a system that recommends user-expected information items through presumption. Recently, the hybrid system combining a content-based recommendation system and collaborative filtering or combining recommendation systems in other domains has been developed. In this paper we resolved the problem of the current recommendation system and suggested a new system combining collaborative filtering and Naive Bayes Classification. In this way, we resolved the over-specialization problem through collaborative filtering and lack of assessment information or recommendation of new contents through Naive Bayes Classification. For verification, we applied the new model in NDSL's paper service of KISTI, especially papers from journals about Sitology and Electronics, and witnessed high satisfaction from 4 experimental participants.
Purpose: This study explored to what extent and how researchers in five Korean government research institutes that implement research data management practices share their research data and investigated the challenges they perceive regarding data sharing.Methods: The study collected survey data from 224 respondents by posting a link to a SurveyMonkey questionnaire on the homepage of each of the five research institutes from June 15 to 29, 2022. Descriptive statistical analyses were conducted.Results: Among 148 respondents with data sharing experience, the majority had shared some or most of their data. Restricted data sharing within a project was more common than sharing data with outside researchers on request or making data publicly available. Sharing data directly with researchers who asked was the most common method of data sharing, while sharing data via institutional repositories was the second most common method. The most frequently cited factors impeding data sharing included the time and effort required to organize data, concerns about copyright or ownership of data, lack of recognition and reward, and concerns about data containing sensitive information.Conclusion: Researchers need ongoing training and support on making decisions about access to data, which are nuanced rather than binary. Research institutes’ commitment to developing and maintaining institutional data repositories is also important to facilitate data sharing. To address barriers to data sharing, it is necessary to implement research data management services that help reduce effort and mitigate concerns about legal issues. Possible incentives for researchers who share data should also continue to be explored.
The purpose of this paper is to analyze open access policies of overseas public funding institutions and to suggest considerations to develop policies in Korea. Policy documents, related literature researches, homepage of major public funding institutions in US, UK, China, Japan, EU have been reviewed to investigate background, components and contents of policies. As results of this research, it was found that most institutions have their mandatory policies, which beneficiaries deposit their publications resulting from publicly funded research to repositories. In addition, they have been advanced policies to expand deposit agents and objectives, to improve the repository, to reduce the embargo period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.