SummaryThe RNAi pathway confers antiviral immunity in insects. Virus-specific siRNA responses are amplified via the reverse transcription of viral RNA to viral DNA (vDNA). The nature, biogenesis, and regulation of vDNA are unclear. We find that vDNA produced during RNA virus infection of Drosophila and mosquitoes is present in both linear and circular forms. Circular vDNA (cvDNA) is sufficient to produce siRNAs that confer partially protective immunity when challenged with a cognate virus. cvDNAs bear homology to defective viral genomes (DVGs), and DVGs serve as templates for vDNA and cvDNA synthesis. Accordingly, DVGs promote the amplification of vDNA-mediated antiviral RNAi responses in infected Drosophila. Furthermore, vDNA synthesis is regulated by the DExD/H helicase domain of Dicer-2 in a mechanism distinct from its role in siRNA generation. We suggest that, analogous to mammalian RIG-I-like receptors, Dicer-2 functions like a pattern recognition receptor for DVGs to modulate antiviral immunity in insects.
BackgroundPreviously, we identified a major quantitative trait locus (QTL) for host response to Porcine Respiratory and Reproductive Syndrome virus (PRRSV) infection in high linkage disequilibrium (LD) with SNP rs80800372 on Sus scrofa chromosome 4 (SSC4).ResultsWithin this QTL, guanylate binding protein 5 (GBP5) was differentially expressed (DE) (p < 0.05) in blood from AA versus AB rs80800372 genotyped pigs at 7,11, and 14 days post PRRSV infection. All variants within the GBP5 transcript in LD with rs80800372 exhibited allele specific expression (ASE) in AB individuals (p < 0.0001). A transcript re-assembly revealed three alternatively spliced transcripts for GBP5. An intronic SNP in GBP5, rs340943904, introduces a splice acceptor site that inserts five nucleotides into the transcript. Individuals homozygous for the unfavorable AA genotype predominantly produced this transcript, with a shifted reading frame and early stop codon that truncates the 88 C-terminal amino acids of the protein. RNA-seq analysis confirmed this SNP was associated with differential splicing by QTL genotype (p < 0.0001) and this was validated by quantitative capillary electrophoresis (p < 0.0001). The wild-type transcript was expressed at a higher level in AB versus AA individuals, whereas the five-nucleotide insertion transcript was the dominant form in AA individuals. Splicing and ASE results are consistent with the observed dominant nature of the favorable QTL allele. The rs340943904 SNP was also 100 % concordant with rs80800372 in a validation population that possessed an alternate form of the favorable B QTL haplotype.ConclusionsGBP5 is known to play a role in inflammasome assembly during immune response. However, the role of GBP5 host genetic variation in viral immunity is novel. These findings demonstrate that rs340943904 is a strong candidate causal mutation for the SSC4 QTL that controls variation in host response to PRRSV.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1635-9) contains supplementary material, which is available to authorized users.
Although H5N1 avian influenza has not yet acquired the capacity to readily infect humans, should it do so, this viral pathogen would present an increasing threat to the immunologically naïve human population. Subunit vaccines based on the viral glycoprotein hemagglutinin (HA) can provide protective immunity against influenza. Polyanhydride nanoparticles have been shown to enhance efficacy of subunit vaccines, providing the dual advantages of adjuvanticity and sustained delivery resulting in enhanced protein stability and immunogenicity. In this work, a recombinant trimer of H5 (H53 ) was encapsulated and released from polyanhydride nanoparticles. Release kinetics of the encapsulated H53 were found to be dependent on polymer chemistry (i.e., hydrophobicity and molecular weight). Polyanhydride nanoparticles composed of sebacic anhydride and 1,6-bis(p-carboxyphenoxy)hexane (CPH; that degrade into more acidic monomers) released structurally stable HA H53 , while H53 released from formulations composed of CPH and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) (that are amphiphilic and whose degradation products are less acidic) displayed unfolding of tertiary structure. However, the antigenicity of the H53 based on binding of a H5-specific monoclonal antibody was preserved upon release from all the formulations studied, demonstrating the value of polyanhydride nanoparticles as a viable platform for HA-based influenza vaccines.
H5N1 influenza virus has the potential to become a significant global health threat, and next generation vaccine technologies are needed. In this work, the combined efficacy of two nanoadjuvant platforms (polyanhydride nanoparticles and pentablock copolymer-based hydrogels) to induce protective immunity against H5N1 influenza virus was examined. Mice received two subcutaneous vaccinations (day 0 and 21) containing 10 μg of H5 hemagglutinin trimer alone or in combination with the nanovaccine platforms. Nanovaccine immunization induced high neutralizing antibody titers that were sustained through 70 days postimmunization. Finally, mice were intranasally challenged with A/H5N1 VNH5N1-PR8CDC-RG virus and monitored for 14 days. Animals receiving the combination nanovaccine had lower viral loads in the lung and weight loss after challenge in comparison to animals vaccinated with each platform alone. These data demonstrate the synergy between polyanhydride nanoparticles and pentablock copolymer-based hydrogels as adjuvants in the design of a more efficacious influenza vaccine.
H5N1 avian influenza is a significant global concern with the potential to become the next pandemic threat. Recombinant subunit vaccines are an attractive alternative for pandemic vaccines compared to traditional vaccine technologies. In particular, polyanhydride nanoparticles encapsulating subunit proteins have been shown to enhance humoral and cell-mediated immunity and provide protection upon lethal challenge. In this work, a recombinant H5 hemagglutinin trimer (H5 3 ) was produced and encapsulated into polyanhydride nanoparticles. The studies performed indicated that the recombinant H5 3 antigen was a robust immunogen. Immunizing mice with H5 3 encapsulated into polyanhydride nanoparticles induced high neutralizing antibody titers and enhanced CD4 + T cell recall responses in mice. Finally, the H5 3 -based polyanhydride nanovaccine induced protective immunity against a low-pathogenic H5N1 viral challenge. Informatics analyses indicated that mice receiving the nanovaccine formulations and subsequently challenged with virus were similar to naïve mice that were not challenged. The current studies provide a basis to further exploit the advantages of polyanhydride nanovaccines in pandemic scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.