Lung cancer shows substantial genetic and phenotypic heterogeneity across individuals, driving a need for personalised medicine. Here, we report lung cancer organoids and normal bronchial organoids established from patient tissues comprising five histological subtypes of lung cancer and non-neoplastic bronchial mucosa as in vitro models representing individual patient. The lung cancer organoids recapitulate the tissue architecture of the primary lung tumours and maintain the genomic alterations of the original tumours during long-term expansion in vitro. The normal bronchial organoids maintain cellular components of normal bronchial mucosa. Lung cancer organoids respond to drugs based on their genomic alterations: a BRCA2-mutant organoid to olaparib, an EGFR-mutant organoid to erlotinib, and an EGFR-mutant/MET-amplified organoid to crizotinib. Considering the short length of time from organoid establishment to drug testing, our newly developed model may prove useful for predicting patient-specific drug responses through in vitro patient-specific drug trials.
Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting “oncogene addiction” could be a promising strategy for combatting p53 mutant tumors.
Background/Aim: Although molecular targeting therapy is an attractive treatment for cancer, resistance eventually develops in most cases. Here, we evaluated chemotherapeutic efficacy on non-small cell lung cancer (NSCLC) with acquired resistance to epidermal growth factor receptor inhibitors mechanistically. Materials and Methods: Antitumor effects of taxotere were evaluated using multiple models, including xenograft, and patient-derived models developed from adenocarcinoma cancer patients. Protein expressions were analyzed after drug treatment. Results: Taxotere inhibited tumor growth of NSCLC cells harboring drug resistance, and reduced the expression of phosphorylated MET proto-oncogene, receptor tyrosine kinase (MET). A tumor-inhibitory effect of taxotere was also demonstrated in vivo in xenografts in mice, patient-derived primary lung tumor cells and patient-derived xenograft with concomitant repression of phosphorylated MET expression. Chemotherapeutic andMET-targeting drug exhibited a synergistic cell growthinhibitory effect. Conclusion: These results suggest that the anticancer drug taxane may be an adjuvant for lung tumors exhibiting enhanced signaling of MET networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.