Protein modification by ubiquitin-like proteins (UBLs) amplifies limited genome information and regulates diverse cellular processes, including translation, autophagy and antiviral pathways. Ubiquitin-fold modifier 1 (UFM1) is a UBL covalently conjugated with intracellular proteins through ufmylation, a reaction analogous to ubiquitylation. Ufmylation is involved in processes such as endoplasmic reticulum (ER)-associated protein degradation, ribosome-associated protein quality control at the ER and ER-phagy. However, it remains unclear how ufmylation regulates such distinct ER-related functions. Here we identify a UFM1 substrate, NADH-cytochrome b5 reductase 3 (CYB5R3), that localizes on the ER membrane. Ufmylation of CYB5R3 depends on the E3 components UFL1 and UFBP1 on the ER, and converts CYB5R3 into its inactive form. Ufmylated CYB5R3 is recognized by UFBP1 through the UFM1-interacting motif, which plays an important role in the further uyfmylation of CYB5R3. Ufmylated CYB5R3 is degraded in lysosomes, which depends on the autophagy-related protein Atg7- and the autophagy-adaptor protein CDK5RAP3. Mutations of CYB5R3 and genes involved in the UFM1 system cause hereditary developmental disorders, and ufmylation-defective Cyb5r3 knock-in mice exhibit microcephaly. Our results indicate that CYB5R3 ufmylation induces ER-phagy, which is indispensable for brain development.
Edited by L aszl o NagyDeficiency of polyunsaturated fatty acids (PUFAs) is known to induce hepatic steatosis. However, it is not clearly understood which type of PUFA is responsible for the worsening of steatosis. This study observed a marked accumulation of hepatic triacylglycerol and cholesterol in fatty acid desaturase 2 knockout (FADS2 À/À ) mice lacking both C18 and ≥ C20 PUFAs that were fed a PUFA-depleted diet. Hepatic triacylglycerol accumulation was associated with enhanced sterol regulatory element-binding protein (SREBP)-1-dependent lipogenesis and decreased triacylglycerol secretion into the plasma via very-low-density lipoprotein (VLDL). Furthermore, upregulation of cholesterol synthesis contributed to increased hepatic cholesterol content in FADS2 À/À mice. These results suggest that ≥ C20 PUFAs synthesized by FADS2 are important in regulating hepatic triacylglycerol and cholesterol accumulation during PUFA deficiency.
Background and AimAging is an independent risk factor for the progression of non‐alcoholic steatohepatitis. Here, we investigated the role of age‐related alterations in fatty acid metabolism in dietary steatohepatitis using lipidomics analysis.MethodsMale 8‐week and 55‐week‐old C57BL/6 J mice were fed a high‐fat diet (HFD) for 8 weeks. The quality and quantity of lipid molecular species in the liver were evaluated using the lipidomics approach.ResultsElder mice fed an HFD developed more severe steatohepatitis than young mice. Oxidative stress and inflammatory cytokines in the liver were exacerbated following HFD feeding in elder mice compared with young mice. In elder mice, de novo fatty acid synthesis was promoted, whereas β oxidation was blunted following HFD feeding, and lipid secretion from the liver was reduced. The expression of sirtuin 1 was not only reduced with age as expected but also significantly decreased due to intake of HFD. In the lipidomics analysis, the concentrations of diacylglycerol and TAG molecular species containing monounsaturated fatty acids were markedly increased following HFD feeding in elder mice compared with young mice. In contrast, the concentration of phosphatidylethanolamine and phosphatidylcholine molecular species containing polyunsaturated fatty acids were remarkably decreased following HFD feeding in elder mice compared with young mice, and the expression of fatty acid desaturase was blunted.ConclusionsAging‐dependent alterations in lipid metabolism under excessive lipid supply most likely enhance hepatic lipotoxicity, thereby exacerbating metabolic steatohepatitis in elderly.
Large-scale genome-wide association studies (GWASs) on bipolar disorder (BD) have implicated the involvement of the fatty acid desaturase (FADS) locus. These enzymes (FADS1 and FADS2) are involved in the metabolism of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are thought to potentially benefit patients with mood disorders. To model reductions in the activity of FADS1/2 affected by the susceptibility alleles, we generated mutant mice heterozygously lacking both Fads1/2 genes. We measured wheel-running activity over six months and observed bipolar swings in activity, including hyperactivity and hypoactivity. The hyperactivity episodes, in which activity was far above the norm, usually lasted half a day; mice manifested significantly shorter immobility times on the behavioral despair test performed during these episodes. The hypoactivity episodes, which lasted for several weeks, were accompanied by abnormal circadian rhythms and a marked decrease in wheel running, a spontaneous behavior associated with motivation and reward systems. We comprehensively examined lipid composition in the brain and found that levels of certain lipids were significantly altered between wild-type and the heterozygous mutant mice, but no changes were consistent with both sexes and either DHA or EPA was not altered. However, supplementation with DHA or a mixture of DHA and EPA prevented these episodic behavioral changes. Here we propose that heterozygous Fads1/2 knockout mice are a model of BD with robust constitutive, face, and predictive validity, as administration of the mood stabilizer lithium was also effective. This GWAS-based model helps to clarify how lipids and their metabolisms are involved in the pathogenesis and treatment of BD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.