properties of biological synapses and perform parallel operations, they require larger energy than a biological synapse. Therefore, development of an artificial synapse with energy consumption on the level of a biological synapse remains an open problem.Organic-inorganic halide perovskite (OHPs) may provide a material to solve this problem, because of their low activation energy of ion migration. Moreover, various structural modulation of polycrystalline films is possible with facile solution processing so that organic parts in the OHPs can control the ion migration and electrical conduction. OHPs have an ABX 3 crystal structure; the A-site cation is located at the center of a BX 6 octahedral cage, and the B-site metal cation is surrounded by the six nearest-neighbor X-site halide anions. [7] OHPs have a significant hysteresis property that is caused by ion migration or space charges, or both, which may enable gradual modulation of conductance in OHP. [8] Two-terminal artificial synapses based on 3D methylammonium (MA) lead halide perovskite (MAPbX 3 , X = Br, I) films showed synaptic responses that are caused by ion migration in the OHP layer. [9,10] Ion migration in 3D OHP film is induced by relatively low activation energy and a low energy consumption of ≈20 fJ per synaptic event was achieved in the synaptic devices. However, the energy consumption could be further reduced to the energy level of biological synapses when the ion migration was controlled by engineering the structure of OHP films could be optimally done.In this work, we introduce 2D and quasi-2D OHP films into artificial synapses to enable control of ion migration and resultant synaptic responses. For this purpose, we replaced the small MA ion with a bulky phenethylammonium (PEA) ion in their crystalline structures. To prepare 2D, quasi-2D, and 3D OHP films, we controlled the stoichiometric ratio of PEA and MA cations to induce self-assembly of a layered structure. This replacement of an MA cation with PEA cation suppresses ion migration in the out-of-plane direction of the OHP films. [11][12][13] Thereby, the activation energy E A of ion migration is increased, so ion migration and excitatory postsynaptic current (EPSC) can be reduced. Also, energy consumption of the device is reduced to ≈0.7 fJ per synaptic event, which is comparable to that of biological synapses. Memory retention of artificial The hysteretic behavior of organic-inorganic halide perovskites (OHPs) are exploited for application in neuromorphic electronics. Artificial synapses with 2D and quasi-2D perovskite are demonstrated that have a bulky organic cation (phenethylammonium (PEA)) to form structures of (PEA) 2 MA n-1 Pb n Br 3n+1 . The OHP films have morphological properties that depend on their structure dimensionality (i.e., n value), and artificial synapses fabricated from them show synaptic responses such as short-term plasticity, paired-pulse facilitation, and long-term plasticity. The operation mechanism of OHP artificial synapses are also analyzed depending on the dimen...
Conventional organic light‐emitting devices without an encapsulation layer are susceptible to degradation when exposed to air, so realization of air‐stable intrinsically‐stretchable display is a great challenge because the protection of the devices against penetration of moisture and oxygen is even more difficult under stretching. An air‐stable intrinsically‐stretchable display that is composed of an intrinsically‐stretchable electroluminescent device (SELD) integrated with a stretchable color‐conversion layer (SCCL) that contains perovskite nanocrystals (PeNCs) is proposed. PeNCs normally decay when exposed to air, but they become resistant to this decay when dispersed in a stretchable elastomer matrix; this change is a result of a compatibility between capping ligands and the elastomer matrix. Counterintuitively, the moisture can efficiently passivate surface defects of PeNCs, to yield significant increases in both photoluminescence intensity and lifetime. A display that can be stretched up to 180% is demonstrated; it is composed of an air‐stable SCCL that down‐converts the SELD’s blue emission and reemits it as green. The work elucidates the basis of moisture‐assisted surface passivation of PeNCs and provides a promising strategy to improve the quantum efficiency of PeNCs with the aid of moisture, which allows PeNCs to be applied for air‐stable stretchable displays.
Embedding metal-halide perovskite particles within an insulating host matrix has proven to be an effective strategy for revealing the outstanding luminescence properties of perovskites as an emerging class of light emitters. Particularly, unexpected bright green emission observed in a nominally pure zero-dimensional cesium–lead–bromide perovskite (Cs4PbBr6) has triggered intensive research in better understanding the serendipitous incorporation of emissive guest species within the Cs4PbBr6 host. However, a limited controllability over such heterostructural configurations in conventional solution-based synthesis methods has limited the degree of freedom in designing synthesis routes for accessing different structural and compositional configurations of these host–guest species. In this study, we provide means of enhancing the luminescence properties in the nominal Cs4PbBr6 powder through a guided heterostructural configuration engineering enabled by solid-state mechanochemical synthesis. Realized by an in-depth study on time-dependent evaluation of optical and structural properties during the synthesis of Cs4PbBr6, our target-designed synthesis protocol to promote the endotaxial formation of Cs4PbBr6/CsPbBr3 heterostructures provides key insights for understanding and designing kinetics-guided syntheses of highly luminescent perovskite emitters for light-emitting applications.
MXenes constitute a rapidly growing family of 2D materials that are promising for optoelectronic applications because of numerous attractive properties, including high electrical conductivity. However, the most widely used titanium carbide (Ti3C2Tx) MXene transparent conductive electrode exhibits insufficient environmental stability and work function (WF), which impede practical applications Ti3C2Tx electrodes in solution‐processed optoelectronics. Herein, Ti3C2Tx MXene film with a compact structure and a perfluorosulfonic acid (PFSA) barrier layer is presented as a promising electrode for organic light‐emitting diodes (OLEDs). The electrode shows excellent environmental stability, high WF of 5.84 eV, and low sheet resistance RS of 97.4 Ω sq−1. The compact Ti3C2Tx structure after thermal annealing resists intercalation of moisture and environmental contaminants. In addition, the PFSA surface modification passivates interflake defects and modulates the WF. Thus, changes in the WF and RS are negligible even after 22 days of exposure to ambient air. The Ti3C2Tx MXene is applied for large‐area, 10 × 10 passive matrix flexible OLEDs on substrates measuring 6 × 6 cm. This work provides a simple but efficient strategy to overcome both the limited environmental stability and low WF of MXene electrodes for solution‐processable optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.